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Preface 

The purpose of this book is to describe a new theory about long-term 

memory, the connectivity model for semantic processing (chaps. 8 and 9). 

In addressing the question of the way that complex semantic codes are 

represented, searched, and retrieved, the model tries to answer the fol¬ 

lowing key problem. Which are the representational assumptions that allow 

us to predict that complex knowledge stored in long-term memory does not 

slow down activation and search processes in a systematic way? When the 

principles of the connectivity model were first published in 1987, my 

primary concern was the experimental evaluation of the model within the 

domain of semantic memory. During a research visit at the University of 

California in Davis, I worked on this topic together with Professor Neal E. 

A. Kroll. In the following years he has carried out a series of well-designed 

experiments in order to test several crucial assumptions and predictions of 

the model (see the brief summary of this work in section 9.7). I am grateful 

for his contributions, suggestions, and the many enlightening discussions 

we had together. 

The basic logic and procedure which led to the foundations of the 

connectivity model is characterized by the attempt to define representa¬ 

tional assumptions as explicitly as possible and to evaluate their plausibility 

or empirical validity whenever feasible (chaps. 1-5). Thus, it was a logical 

consequence to focus also on the implementation of the model. I wish to 

thank F.G. Winkler who wrote the simulation program CONN1. His work 

has led to important new insights which are discussed in chap. 10. 

When pursuing the representational problem, it gradually became clear to 

me that the issue of how information is encoded in the brain must also be 
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considered. The more I focused on the elaboration of a connecting bridge 

between theoretical and neurophysiologically based representational as¬ 

sumptions (chap. 11), the more I became convinced that the future of 

cognitive psychology lies in the further development of cognitive neurosci¬ 

ence. I am grateful to Professor Jaak Panksepp (from Bowling Green State 

University, Ohio, where I stayed during a research visit in 1991) for his 

encouragement to follow-up this approach and for the valuable suggestions 

he made when reading parts of the manuscript. Chapters 10 and 11 are 

additions to the English edition which were not included in the original 

German publication. 

Last but not least, I wish to thank Patrick O’Mahony who has translated 

the German edition into English. His skills and collaborative mind have 

been invaluable in the prompt completion of the English manuscript. 
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Introduction 

An important but controversial issue in memory research concerns the way 

in which the complexity of semantic structures influences processing time 

and memory performance. Traditional memory theories such as HAM, 

ACT, or ACT* assume that memory load increases and processing time 

slows down as more semantic components are processed. This assumption 

amounts to what is known as the paradox of retrieval interference: The 

more information is stored in memory, the slower it works. Chapters 6 and 

7 give an extensive review of this issue. Chapter 8 includes the mathematical 

basis for a new, nonconnectionist memory model, the connectivity model, 

which refutes the paradox of retrieval interference. The basic assumption 

here is that —in contrast to conventional computers — the speed of search 

processes in human memory increases as the complexity of interconnected 

knowledge increases. This prediction, which contradicts all presently ex¬ 

isting memory models, explains a variety of different memory phenomena 

that are discussed in chap. 9. A simulation program is presented in chap. 10. 

This program allows for a better understanding of the complex predictions 

of the connectivity model. Neurophysiological evidence is also in close 

agreement with the predictions of the connectivity model. This issue is 

addressed in chap. 11, where it is shown that the well-known properties of 

postsynaptic signal transmission lead to the conclusion that converging 

neural activity speeds up processing time, and that the stronger a neural 

signal is, the faster it can be transmitted. Besides other evidence, this fact is 

also confirmed through reaction time experiments, which show that re¬ 

action times decrease as stimulus intensity increases. Finally, chap. 12 gives 
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XIV INTRODUCTION 

a brief summary and addresses how the connectivity model differs from 

connectionist approaches. 

One of the fundamental principles on which the connectivity model is 

based is the assumption that any comprehensive memory theory must 

explicitly define the format of a code. If explicit representational assump¬ 

tions are avoided, misleading and contradictory theories about memory or 

cognitive processes emerge. After a brief historical review about the 

representational problem in chap. 1, this argument is developed and 

explained in chaps. 2, 3, and 4. Here, theories and experiments about 

forgetting show why misleading representational assumptions are respon¬ 

sible for the failure of traditional memory theories. In chap. 5, those 

theories that define the format of a code explicitly are shown to assume a 

hierarchical structure. The chapters that follow demonstrate that the 

assumption of a hierarchical coding format is at the core of retrieval 

interference. It is argued that only the suggested connectivity model is 

capable of overcoming this paradox. 



The Representational 
Problem: A Historical 
Perspective 

Those who concern themselves with the history of experimental psychology 

will no doubt conclude that the topics this discipline has dealt with in the 

last 100 years have not changed much (cf. with this the synoptic works of 

Boring, 1950; Flugel, n. d.; Luck, Miller, & Rechtien, 1984). In cognitive 

psychology, for example, there are many experimental paradigms and 

theoretical concepts that have been dealt with in similar fashion, but under 

different titles, over many historical periods. Consider the cognitive- 

psychological concept of a limited capacity of short-term memory (STM). 

James McKeen Cattell had already carried out studies on the attention span 

at the Leipzig Institute of Wilhelm Wundt and observed that in a simulta¬ 

neous, tachistoscopic display of several stimuli only 4 to 6 units —be they 

lines, letters, or words —could be understood and remembered (Flugel, n. 

d., p. 157). The terms capacity of STM and attention span (cf. Ebbinghaus, 

1885) refer to one and the same empirical phenomenon. Where they differ 

is in their historical context and in the ways in which they happen to be 

embedded in overlapping theoretical relations (e.g., Bahrick, 1985). There 

is a long list of historical concepts and empirical phenomena that have been 

redeployed. Here, however, we content ourselves with a few references and, 

in doing so, recall the historical relations between the following concepts: 

• the similarity between Donder’s “subtractive procedure” (Donders, 

1868; cf. Massaro, 1975, p. 44; Sanders, 1971, p. 17) and the 

experimental paradigms in cognitive psychology (Posner, 1978; 

Posner, Boies, Eichelman, & Taylor, 1969); 

• the importance that reaction time paradigms have assumed in 
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2 1. A HISTORICAL PERSPECTIVE 

experimental psychology ever since Wilhelm Wundt conducted his 

extensive experiments at the Leipzig Institute; 

• the continued importance of verbal association paradigms, which 

have been an important feature in memory psychology since Eb- 

binghaus (1885; e.g., McGeoch, 1942; Slamecka, 1985a, 1985b); 

• the experimental documentation concerning the superiority of visual 

memory over verbal memory, which has been known since Kirk¬ 

patrick (1894) and Calkins (1898), and not just since Shepard (1967) 

or Paivio (1971); 
• and, within the confines of cognitive psychology, the “rediscovered” 

findings — dating back to Cattell (1886) —that words can be identi¬ 

fied more quickly than images (Potter & Faulconer, 1975). 

Seen in this light, it is not surprising that critical voices continually claim 

that little, if any, scientific progress is being made in our discipline. We 

attempt to show that this view is misleading because it ignores important 

recent developments. It can be seen from the comparison of the most 

important historical approaches that it is the specific preoccupation with the 

representational problem that is in fact the new contribution of cognitive 

psychology as it emerged in the Anglo-American sphere. Only the explicit 

consideration of the representational problem can build a foundation on 

which to arrive at a consistent interpretation of memory phenomena. 

Chapters 2, 3, and 4 consider this question in greater detail. 

The name cognitive psychology has often led to misunderstandings about 

the actual concerns of this comparatively young field of research. A more 

precise and specific description would be “the psychology of information 

processing.” Those critics who claim that the “cognitive trend” will soon 

turn into an “action trend” (Graumann, 1983, p. 68) or “emotional trend,” 

are not taking into consideration the specific contribution made by cogni¬ 

tive psychology. Its task is to examine how information is encoded, 

represented, and processed. The type of information involved — whether 

“cognitive,” “emotional,” or “action relevant” —has no immediate impact 

on the study of the representational problem. Cognitive psychology is not 

the counterpart of an “emotional” or “action” psychology. Nevertheless, it 

emphasizes the cognitive content, because for methodical reasons emotional 

processes are much more difficult to examine empirically than cognitive 
processes. 

The next section considers the fundamental concepts needed to explain 

and elucidate the representational problem. Subsequent sections are then 

devoted to the historical development of the representational problem. 

Based on these sections, we show that the consideration of the representa¬ 

tional problem leads to new and important discoveries. 
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1.1 DEFINING THE REPRESENTATIONAL PROBLEM: 
CODE, CODING, AND THE CODING FORMAT 

Which processes enable sensory information to be recognized, stored, and 

recalled? This is the main research topic in cognitive psychology, and 

characterizes what is generally understood by the encoding or representa¬ 

tional problem. Encoding or coding is the transformation of sensory 

information into a certain format of a memory representation, resulting in 

the formation of a memory code. The form, composition, and structure of 

the internal representation, on the other hand, is known as the coding 

format. It is precisely this interest in how information is “represented” (i.e., 

how information is stored in memory) that has led to the preeminent 

position of memory research in the field of cognitive psychology. Because 

coding is considered a process of transformation — reflecting different 

stages of information processes, such as perception, recognition, and 

selective attention —it becomes clear that memory can be described only if 

empirically validated assumptions regarding the entire information¬ 

processing system are made. This idea of a close interdependence between 

the properties of the encoding format and the structure of the entire 

information-processing system is discussed in chap. 4. 

The description of the elementary properties of codes is crucial here. 

Consequently, memory research is the main focus of the following histor¬ 

ical survey. 

1.2 MEMORY RESEARCH: A HISTORICAL PERSPECTIVE 

It is worth noting that Ebbinghaus, as the founder of empirical memory 

research, had no interest in representational assumptions. Following his 

description of the “Mangelhaftigkeit des Wissens iiber das Gedachtnis” (The 

inadequate knowledge about memory), Ebbinghaus (1885) wrote: 

And because all our knowledge is so uncertain and imprecise, it has remained 
unfruitful for an understanding of a theory of memory, recall, and associa¬ 
tion processes. In our ideas on its physical basis, we use different metaphors 
such as stored images, imprinted ideas, and encarved traces etc., of which we 
only know that one thing is certain that they are not correct, (p. 7) 

Ebbinghaus could hardly have expressed his rejection of the representa¬ 

tional problem more clearly. Nevertheless, it would be wrong to assume that 

memory psychology could have managed without representational assump¬ 

tions in its early stages. These were more implicit than explicit in nature and 
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were based on the fundamental conceptions of associationism, which was 

the predominant psychological trend in the second half of the 19th century. 

Ebbinghaus saw the goal of his work not as an attempt to empirically 

examine associationistic representational assumptions, but rather to sub¬ 

stantiate the scientific claim of his experimental approach in psychology. 

The status of implicit and explicit representational assumptions within 

memory psychology is discussed in chaps. 2 and 3. 

In order to evaluate the importance of Ebbinghaus’ work, we must 

consider the historical factors that influenced it. Two factors need to be 

taken into consideration: On the one hand, there was the dismissive attitude 

toward psychology as an experimental science and, on the other hand, the 

limited prospect of ever arriving at an empirically validated theory of 

memory. Ebbinghaus, like other empirical psychologists of his day, was 

primarily concerned with showing that mental processes — like physical and 

biological processes —could also be examined and understood using scien¬ 

tific methods. His approach to the problem was therefore primarily one of 

method as opposed to content. It consisted of the classical scientific 

procedure of proving what effect the specific variation of one or more 

independent variables has on one or more dependent variables. The 

dependent variable was memory performance or the extent of forgetting. 

Among the most important independent variables were the number of 

repetitions and the retention interval (i.e., the time that elapses between 

presentation and test), as well as the nature and amount of material to be 

learned. Ebbinghaus arrived at a series of rules governing the examined 

variables, whereby the rule governing the length of the retention interval 

and memory performance, known as the “forgetting curve,” is only one of 

the better-known examples. 

From the perspective of the then-dominant school of thought, these 

results were a sweeping success. Ebbinghaus was now able to prove that the 

study of higher mental processes was also possible for a psychology using 

scientific methods. Thus, together with Wilhelm Wundt, Ebbinghaus made 

a significant contribution toward the founding of a scientifically and 

experimentally oriented psychology. It is interesting to note, however, that 

Wundt had a negative attitude toward the study of higher mental pro¬ 

cesses—as they represented memory performance —and seven years after 

first publishing Philosophische Studien (the journal founded by Wundt in 

1890) Ebbinghaus published Zeitschrift fur Psychologie und Physiologie 
der Sinnesorgane, which to a certain extent provided a forum for indepen¬ 

dent researchers outside of the Wundtian School (Boring, 1950; Flugel, n. 
d., p. 167). 

Muller, Jost, and Pilzecker (Jost, 1897; Muller & Pilzecker, 1900) 

followed a procedure similar to Ebbinghaus, but even this was completely 

derived from associationism (e.g., Muller, 1917). The first 30 years of 
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empirical memory research are thus essentially characterized by two factors: 

on the one hand, by the methodical-scientific orientation that predomi¬ 

nates, and, on the other hand, by simple associationistic conceptions of 

memory. As a result, one finds a wealth of important rules that up to now 

remain untouched in applied memory psychology. What was missing, 

however, were approaches to general, overlapping memory theories. There¬ 

fore, within the framework of classic memory psychology, it was not the 

investigation of representational assumptions that predominated, but in 

effect only the question of how associations develop between memory 
contents. 

After this first classical period of memory research, the emphasis of 

scientific research shifted from Germany to the Anglo-American sphere. 

Even there the focus remained for a long time —up to the early 1960s — 

within the framework of associationism and behavioristic approaches. 

There were, however, a few important exceptions. For example, F. C. 

Bartlett, then a Cambridge psychologist, was among the first to introduce 

the concept of a mental “schema” into memory psychology. Bartlett (1932) 

assumed that sensory information is structured and stored alongside these 

mental schemas, which are themselves represented in memory. Schemas, 

which are derived by means of abstraction, represent the essential charac¬ 

teristics of a whole class of stimuli. The similarity to the Gestalt concept, 

but also to Rosch’s (1975) “typicality concept” in the area of concept 

formation, should not be overlooked. According to Bartlett, the associa¬ 

tionistic viewpoint of memory as a passive store was abandoned, and the 

active, structuring character of memory came to the fore. Bartlett assumed 

that schemas are of crucial importance for perception and thinking as well 

as memory. Thus it became clear that memory could not be studied and 

understood in isolation from other phenomena of the human mind. 

Oldfield joined others in adopting Bartlett’s schema concept, which 

Evans and his colleagues (Evans, 1967; Evans & Arnoult, 1967; Evans & 

Edmonds, 1966) subsequently applied in the area of concept formation 

(Homa & Cultice, 1984). Seen from our perspective, Bartlett’s works occupy 

a special position, because they were among the first ideas that —after 50 

years of empirical memory research — started out with clearly drawn 

representational assumptions. It was all the more surprising, therefore, that 

these important ideas —apart from those exceptions mentioned earlier —did 

not receive widespread attention. 
In the late 1940s, Shannon’s information theory and Wiener’s cybernetics 

theory stimulated new interest among researchers in psychology and in 

other scientific disciplines (see Wiener, 1968). In the hope of a promising 

and fruitful approach to the study of perception, memory, and thinking, 

information theory and cybernetics were frequently introduced into psy¬ 

chology with a lack of critical insight. The number of works relating to the 
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concept of information theory, above all in the Anglo-American sphere, 

soon became vast (Garner, 1962). One of the best-known experiments was 

carried out by Miller (1956) on the “magical number seven.” He was able to 

show that the human “channel capacity” lies within a range of two and three 

bits. Thus, STM can store at maximum between four and eight unrelated 

information units. If this capacity limit is exceeded, information stored in 

STM is lost. Miller, however, emphasized that his results were closely 

related to Kiilpe’s, which were reported at the first Congress of Experi¬ 

mental Psychology in GiejSen in 1904 (which was, incidentally, inaugurated 

by Ebbinghaus). Miller failed to mention that similar experiments had 

already been conducted by James McKeen Cattel and Wilhelm Wundt, who 

came to the conclusion that the immediate attention span comprises 

approximately four to six different units. 

Psychological research, based on information theory, was often accused 

of merely altering the names of already well-established results and 

concepts. This criticism is certainly justified. Information theory was 

inadequate for psychological resarch because it neither led to a better and 

deeper understanding of results already known, nor contributed to the 

discovery of new experimental paradigms. It therefore comes as no surprise 

that the significance of information theory began to wane by the mid-1960s. 

It may seem paradoxical to assume that, in spite of its negative effects, 

information theory was an essential precursor to cognitive psychology. In 

order to explain this notion, we must deal separately with the negative and 

positive influences of information theory. 

Its negative influence can be seen in the fact that its concepts —though 

useful for describing the stimulus material (Garner, 1962; Klimesch, 1974; 

Miller, 1956) or measuring the amount of information transferred from 

input to output (cf. choice reaction time experiments and the concept of 

“channel capacity”) — were inadequate in defining representational assump¬ 

tions for human information processing. The application of information 

theory in psychology, therefore, stood (whether intended or not) in the best 
behavioristic tradition. 

Information theory also had a positive influence. For the first time in the 

history of psychology there was a model to describe basic principles of 

information processing. It was only after the advent of cybernetics that 

psychologists began to see a parallel between the technical, machine-related, 

and the human or, generally speaking, biological information processing. 

Thus, it was only a small step toward the development of a new system, 

namely that of artificial intelligence and later of cognitive science. Within 

the framework of this discipline, which developed somewhat later than 

cognitive psychology and maintained close connections with it, the repre¬ 

sentational problem was of crucial importance from the outset (J. R. 
Anderson & Bower, 1973; Newell & Simon, 1972). 
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Toward the end of the 1960s, there was a “cognitive revolution,” or an 
abrupt renunciation of the formal, descriptive approach of information 
theory toward the special interest shown in “opening the black box,” left in 
the wake of behaviorism. Opening the black box made it necessary to make 
assumptions about the internal structure of information processing. Thus, 
representational assumptions became the central concern of cognitive 
psychology. Four works can be regarded as milestones in this new devel¬ 
opment: Neisser’s Cognitive Psychology (1967), which was, from a histor¬ 
ical standpoint, probably the most important work (J. R. Anderson, 1985a, 
p. 9; Bahrick, 1984); Atkinson’s and Shiffrin’s work (1968) on an overlap¬ 
ping theory of memory; the introduction into human information pro¬ 
cessing by Lindsay and Norman (1972); and the epoch-making Human 
Associative Memory by J. R. Anderson and Bower (1973). The importance 
of this new trend was soon noticed and recognized in the German-speaking 
area (Wimmer & Perner, 1979). 

1.3 REPRESENTATIONAL ASSUMPTIONS IN HISTORICAL 
APPROACHES TO THE PSYCHOLOGY OF PERCEPTION 

AND THINKING 

Psychology of perception and thinking confronted representational as¬ 
sumptions long before memory psychology. The reason for this is obvious: 
In contrast to memory processes, certain structures and principles gov¬ 
erning perception and thinking are to some extent more accessible to 
self-observation and can thus be detected more easily. 

Thus, for the Wurzburg School, the question of how the contents of 
consciousness are structured and of what elements they consist were among 
the most important research topics (cf. Messer, 1924, p. 24). By analyzing 
the contents of consciousness, which could either be conducted by experi¬ 
mental methods or by the method of systematic self-observation, an 
attempt was made to classify its elements. These examinations led to 
differentiation between two types of consciousness elements: sensations and 
intentional acts (cf. the excellent review in Humphrey, 1963; Munzert, 
1984). In order to distinguish their approach from that of elementaristic 
psychology, they introduced an important restriction: Perception and 
thought, for example, could not be explained by a decomposition into 
individual elements. The exclusive preoccupation with phenomena acces¬ 
sible to self-observation, as well as the assumption that consciousness 
processes could, in principle, not be explained by a knowledge of their 
elements, were the obvious reasons why access to explicit representational 
assumptions was denied the Wurzburg School. Chapter 4 discusses why a 
general understanding of perception, memory, and thought processes is 
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impossible without assumptions regarding the unconscious course of infor¬ 
mation processes in their early stages. 

For Gestalt psychology, the situation was fundamentally different. Like 
Bartlett’s concept of schema, the concept of Gestalt was also used as a 
structuring and ordering principle that commanded importance beyond the 
well-described principles of perception (see Wellek, 1955, for a review). 
Hence, it also played a central role in thought processes, as can be seen in 
Wertheimer’s well-known nine-point task. Perception and thought pro¬ 
cesses were —as in the case of cognitive psychology —closely related phe¬ 
nomena. What connected both can be seen in the common structuring 
principles expressed in various Gestalt laws and that, from our present 
standpoint, can be regarded as explicit representational assumptions. As in 
Gestalt psychology, explicit representational assumptions were also key 
concepts in cognitive psychology, enabling an understanding of the close 
interdependence of perception, thought, and memory processes. Another 
important link between Gestalt psychology and cognitive psychology is the 
lack of focus on consciousness processes. 

The importance of representational assumptions in Gestalt psychology is 
reflected in the physiologically oriented assumptions known by the term 
isomorphism. From our present perspective, however, isomorphism be¬ 
longs to the one of the drawbacks of Gestalt psychology. There was a 
reliance on physiological assumptions without the necessary or appropriate 
background knowledge, which is just now becoming available (see chap. 
11). 

The Wurzburg School and, above all, Gestalt psychology came very close 
to the current understanding of the representational problem. In the 
Wurzburg School it was the strict focus on consciousness processes; in 
Gestalt psychology, on the other hand, it was the premature transition to a 
physiological explanation and the rejection of an elementaristic approach 
that hampered a more sophisticated investigation of the representational 
problem. 

1.4 CONCLUSIONS 

This short historical review of the representational problem was intended to 
show how, during the founding period of memory psychology, interests 
other than the specific examination of representational assumptions stood 
in the foreground. These important assumptions did not appear until the 
1930s, roughly 50 years after the advent of empirical memory research, and 
remained virtually unnoticed for another 35 to 40 years. On the other hand, 
the psychology of perception and thinking (which dealt with structuring 
processes far earlier) came very close to the “cognitive understanding of the 
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problem.” Gestalt psychology, above all, made an essential contribution in 

this area. However, it was still impossible —even for Gestalt psychology — 

to carry further the representational problem. 

The view that the explicit recognition of the representational problem is, 

in fact, the new contribution of cognitive psychology —although a divided 

issue among important representatives of cognitive psychology (J. R. 

Anderson, 1985a, 1985b; Kintsch, 1985) —is by no means widely accepted 

(e.g., Slamecka 1985a, 1985b). As an example, there are still psychologists 

who see behavioristic approaches in cognitive psychology (Bruder, 1984). 

J. R. Anderson (1985b), in referring to the acquisition of word lists, 

provided a good characterization of the current situation: “Slamecka’s 

(1985a) discussion . . . misses the great thing that we have learned in 

modern cognitive psychology (not to deny it was known before): Lists are 

hierarchically organized in chunks. . . . Without recognizing that structure 

there is a multitude of uninterpretable data” (p. 436). But there are other 

reasons why Anderson’s quote serves as a “guide” through this present 

volume. Although we agree with Anderson regarding the importance of the 

representational problem, we attempt to show in chap. 5 and thereafter that 

the general validity of the assumption regarding hierarchical coding struc¬ 

tures is in fact false. 



Traditional Theories of 
Forgetting 

Memory performance and forgetting are concepts that appear to comple¬ 

ment each other. For example, consider the following simple memory 

experiment: If subjects are required to remember 20 different words, and if 

during the test they are capable of recalling 15 words, then the 5 words not 

recalled have, by definition, been forgotten. But what does “forgetting” 

mean? 

Mental representations must exist for those words that have been 

recalled. But which representational assumptions are valid for the forgotten 

words? Have the forgotten words decayed, or does forgetting only mean 

that stored information can no longer be retrieved? Even everyday experi¬ 

ence shows us how, for example, a name has “escaped” us, even though we 

can effortlessly remember it at a later date. This situation is known as 

retrieval failure and is most likely due to processes interfering with the 

retrieval of the sought-after memory content. The question of whether or 

not forgetting can be explained by retrieval failure or by the loss of stored 
information is examined in this chapter. 

The causes and effects of forgetting are first discussed on the basis of 

experiments and theories of traditional —primarily associationistic — 

memory research, which do not put forward any explicit assumptions 

concerning the encoding format (G. R. Loftus, 1985; Slamecka, 1985c; 

Slamecka & McElree, 1983). Chapters 3 and 4 show that, in order to arrive 

at a consistent explanation of forgetting, explicit representational assump¬ 

tions are required. 

10 
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2.1 THE MOST IMPORTANT CAUSES OF FORGETTING: 
INTERFERENCE OR PASSIVE DECAY? 

In memory psychology, there are two competing theories of forgetting: 

decay theory (J. Brown, 1958; Reitman, 1974; M. J. Watkins, O. C. 

Watkins, Craik, & Mazuryk, 1974) and interference theory (Postman & 

Underwood, 1973; Runquist, 1983; Shiffrin, 1970a, 1973; Spring, 1968; 

Underwood, 1964; see also the overviews in J. R. Anderson, 1985a; 

Klimesch, 1979a, 1979c; G. R. Loftus & E. F. Loftus, 1976; Stern, 1981). 

Decay theory assumes that forgetting is caused by a time-dependent 

autonomous process that becomes increasingly effective the more time 

elapses and finally leads to the complete loss of stored information. 

Interference theory, on the other hand, assumes that there are processes 

that impede or halt the retrieval, perhaps also the storage. Pro- and 

retroactive interferences of memory contents (L. R. Peterson & M. G. 

Peterson, 1959), context effects (S. M. Smith, 1982, 1984; S. M. Smith, 

Glenberg, & Bjork, 1978), or a continuing “unlearning” of stored codes (cf. 

the classic work by McGeoch, 1932) are regarded as possible interference 

processes. Figure 2.1 summarizes the most important assumptions and 

predictions of both theories. 

The Brown-Peterson paradigm (J. Brown, 1958; L. R. Peterson & M. G. 

Peterson, 1959), in particular, and the variants derived from this (e.g., 

Reitman, 1971; Roediger, Knight, & Kantowitz, 1977) were used to test the 

predictions of interference and decay theory. The experimental design 

consists of several individual trials and is shown in Fig. 2.2. Each trial starts 

with the presentation of a trigram (i.e., a group of three items), which is 

DECAY 
Forgetting = autonomous 

decay of information. 

Hypothesis Dl: forgetting 
is a function of time. 

Hypothesis D2: forgetting 
results in the complete 

loss of information. 

FIG. 2.1. Comparing the hypotheses of the decay and interference theory. 
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FIG. 2.2. A single trial in a Brown-Peterson paradigm. 

followed by a distractor task and a free-recall task. The distractor task 

prevents the subjects from memorizing the presented items. 

2.1.1 Forgetting as Passive Decay: Empirical 
Evaluation of Hypothesis D1 

The application of the Brown-Peterson paradigm led to some surprising 

results. First of all, it could be demonstrated that within a retention interval 

of only 18 s, memory performance dropped to chance-level (L. R. Peterson 

& M. G. Peterson, 1959). The percentage of correctly reported items lay at 

a little over 10%. Considering the unexpectedly rapid decline in memory 

performance (being only a matter of seconds), the assumption that a passive 

decay process was the cause of forgetting appeared justified (J. Brown, 

1958; L. R. Peterson & M. G. Peterson, 1959). Figure 2.3 shows a result 

typical of a decay theory: the more time elapses, the greater the increase of 

forgetting. 

% Recan 100 

80 

60 

40 

20 

0 

0 5 10 15 18 20 

Retention interval in seconds 

FIG. 2.3. Idealized results of the Brown-Peterson paradigm. Each data point 
represents the average of all trials for a certain retention interval. 
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The results depicted in Fig. 2.3 may create the misleading impression that 

the extent of forgetting is only a function of the length of the retention 

interval. However, this is because only the average of all trials is displayed. 

Keppel and Underwood (1962) pointed to this fact and showed that a 

separate evaluation of each trial presents a completely different picture, as 
shown in Fig. 2.4. 

Keppel and Underwood’s results (1962) demonstrated that time is by no 

means the only factor that determines the extent of forgetting. There is also 

a dramatic decline in memory performance with an increase in the number 

of trials. This effect is known as proactive interference. If time were the 

only factor determining forgetting, and if the length of the retention 

interval were kept constant, a passive decay theory would predict constant 

recall probabilities, as demonstrated by Fig. 2.5. 

The hypothetical results of Fig. 2.5 demonstrate that every item in each 

trial is subject to the same autonomous decay process. Consequently, for a 

given retention interval, recall probabilities are of equal magnitude. But as 

we know from Fig. 2.4, this is not the case. 

Thus far, we relied on the classic findings of J. Brown (1958), L. R. 

Peterson and M. G. Peterson (1959), and Keppel and Underwood (1962) in 

our empirical evaluation of Hypothesis Dl. However, their findings on pro- 

and retroactive interference are experimentally safeguarded to such an 

extent (see also Melton & Martin, 1972) that they are outlined in many 

standard textbooks (also, e.g., J. R. Anderson, 1985a, p. 155), so we can 

forego any further description of more recent studies. 

% Recall 100 

80 

60 

40 

20 

0 j|i_i_i 

0 5 10 15 18 20 

Retention interval in seconds 

FIG. 2.4. Idealized results of the Brown-Peterson paradigm. Averaging was done 

separately for the first, second, and third trials. 
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1. Trial 2. Trial 3. Trial 4. Trial 

FIG. 2.5. Hypothetical results which are to be expected if autonomous decay is the 
only cause of forgetting. In this case, recall performance (dashed line) depends solely on 
the length of the retention interval. The probability of intrusions from preceding 
trigrams depends on the degree these items have decayed. 

2.1.2 Forgetting Caused by Interference: Empirical 
Evaluation of Hypothesis II 

Decay theory assumes that forgetting is a function of time, but interference 

theory assumes it is just as much a function of the number of trials carried 

out. Both variables are responsible for lowering memory performance. 

According to interference theory, it is the number of trials that are 

conducted, which lead to a cumulative increase in cognitive load and, as a 
consequence, to a decline in memory performance. However, the two 

variables —increasing time and increasing cognitive load —are intertwined 

and thus experimentally inseparable. 

This basic dilemma is illustrated in Fig. 2.4. The two variables —time and 

interference —cannot be viewed in isolation from each other. The longer the 

retention interval, the sooner decay processes can become effective. On the 

other hand, if the retention interval is increased, then the effectiveness of 

distractor activity as well as interference increases. If the distractor task 

would be omitted, subjects may repeat the items and remember them 

perfectly. In this case, the Brown-Peterson paradigm would become an 

unsuitable method with which to examine forgetting. 

In addition to the length of the retention interval and the amount of 

distractor activity, item similarity is yet another powerful factor influencing 

memory performance: Memory performance declines with increasing sim¬ 

ilarity. According to interference theory, two different processes affect the 

availability of items in a Brown-Peterson paradigm: Whereas cumulative 

cognitive load operates to decrease the availability of the most recently 
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presented items, spontaneous recovery operates to increase the availability 

of older items from earlier trials. As a result, these two effects lead to a 

confusion of older and more recently presented items. Item similarity is an 

additional factor increasing this tendency to confuse items (Keppel & 

Underwood, 1962). 

The detrimental effect of item similarity on memory performance is 

documented by a number of different experiments (cf. the review in Melton 

& Martin, 1972). The most impressive results were those of Wickens (1970, 

1972), arrived at with the release-of-proactive-interference technique (see 

also Kroll, Bee, & Gurski, 1973). In this version of the Brown-Peterson 

paradigm, item similarity is the most important experimental variable. For 

example, consider the experiment shown in Fig. 2.6: Here, letters are 

presented during the first three trials and numbers are presented in the 

remaining three. This constitutes the experimental group. Within the 

control group, however, letters are presented in all the trials. A comparison 

of the two groups shows that the “shift trial” (that trial, after which the 

“new” items — here numbers — are presented) leads to a removal of proactive 

inhibition. The decrease in item similarity leads to an increase in memory 

performance. 

This result, shown schematically in Fig. 2.6, confirms the validity of 

interference theory: Forgetting is not only dependent on the extent of an 

increasing cognitive load (here, the number of trials), but is equally 

dependent on the type of cognitive demand (here, the remembering of 

XMO 342 
% Recall 

GSN 

215 

12 3 4 

Number of Trials 

FIG. 2.6. Idealized results of the release of proactive inhibition paradigm. In contrast 
to the control group (x), the use of a different type of trigram in the 4th trial (shift trial) 
leads to a release of proactive inhibition in the experimental group (o). 
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similar or dissimilar items) that occurred before the critical reproduction 

attempt (cf. Hypothesis II in Fig. 2.1). The results of the release-of- 

proactive-interference paradigms support Keppel and Underwood’s view 

that forgetting is due to a tendency to confuse items. 

The direction of interference is by no means only confined to future events, 

as is the case in proactive inhibition. Numerous experiments show that 

previously learned contents can just as easily be disturbed by an interference 

effect appearing later in time (see the review in Klimesch, 1979a). This is 

known as retroactive interference or retroactive inhibition. Both proactive 

and retroactive inhibition represent different aspects of one and the same 

phenomenon. Moreover, both can be examined by means of the same ex¬ 

perimental group, as shown in Table 2.1. The decisive factor here is whether 

it is the first or second list that is tested for memory performance. This 

determines which list must be presented to the control group. 

As convincing as these results may seem, there are still important 

arguments questioning the validity of interference theory. One of these 

arguments refers to the experimental design: It points out that distractor 

activity does not necessarily prevent rehearsal. Roediger et al. (1977) listed 

two conditions to be met to guarantee that distractor activity fulfills its 

purpose: 

1. Care must be taken that the distractor task leads to a complete 

distraction of attention. 

2. It must be guaranteed that rehearsal actually draws on a subject’s 

limited attention capacity and cannot be performed automatically. 

The authors discovered that the cognitive load imposed by distractor 

activity does not influence memory performance. Consequently, they arrive 

at the conclusion that the aforementioned conditions are not met in 

interpreting experiments on forgetting. Either the distractor task does not 

fulfill its purpose and does not lead to a complete distraction of attention, 

or it must be assumed that no interference exists between the distractor and 

memory task. This brings us to another objection to the use of distractor 

TABLE 2.1 
Method for Testing Proactive (PI) and Retroactive Inhibition (Rl) 

Experimental Design Sequence of Lists Subjects Are Tested for 

Experimental group List 1 List 2 List 1 
RI: 

Control group List 1 - List 1 

Experimental group List 1 List 2 List 2 
PI: 

Control group - List 2 List 2 
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tasks in experiments on forgetting: The decline in memory performance is 

due to the fact that the limits of attention capacity are exceeded. This leads 

to a situation in which new information cannot even begin to be encoded or 
stored. 

Recent examinations of the “next-in-line” effect confirm this interpreta¬ 

tion and show that information on which a subject is not concentrating is 

stored only partially or not at all (Bond, 1985; Bond & Kirkpatrick, 1982). 

However, information not stored cannot be “forgotten.” 

The release of a proactive inhibition, when it is caused by a rapid change 

in similarity, can be explained either by a lessening of confusion or by a 

shift in attention. If, for example, numbers suddenly appear instead of 

words after a series of tiring tasks, the result will be an increase in the 

subject’s level of attention and an improvement in memory performance. 

2.1.3 Result of the Empirical Evaluation of 
Hypotheses D1 and II 

Up to now the discussion has focused on the causes of forgetting and has 

demonstrated that it is actually impossible to distinguish between the 

predictions of interference and decay theory. On the one hand, there is the 

fact that the two variables — increasing time and increasing interference — 

are confounded, and, on the other hand, there is the controversy sur¬ 

rounding the effect of the distractor task on the limited attention capacity. 

On the basis of these fundamental difficulties it is not surprising that recent 

research no longer includes experiments on forgetting. 

As we have shown, one of the failures of the various theories of 

forgetting is due to methodical difficulties. Closer inspection, however, 

reveals that the representational problem is the real reason for the difficul¬ 

ties discussed earlier. As mentioned in the introductory remarks to this 

chapter, items that can be recalled must be stored in memory. Conse¬ 

quently, there is no obvious motivation to inquire after their precise nature 

of representation. The crucial question here concerns how to deal with 

forgotten information. This questions opens up a whole new field of inquiry 

into the nature of internal representations. Does a code stored in memory 

decay? If so, what exactly does inhibition or interference mean? What is to 

be understood by attention, and so forth? Chapters 3 and 4 consider the 

general importance of the representational problem in greater detail. 

2.2 DOES FORGETTING RESULT IN THE FINAL LOSS 
OF INFORMATION? DISCUSSION OF HYPOTHESES 

D2 AND 12 

Hypothesis D2 clearly states that forgotten information is irretrievably lost 

from memory. Interference theory, however, focuses on two distinct 
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memory processes: encoding and retrieval. Interference processes can have 

just as much of an effect on the storage of new information as on the recall 

of already stored information. As long as recall processes are affected, one 

speaks of search or retrieval failures and simply assumes that, even though 

the sought-after information cannot be found, it is, nevertheless, still 

present in memory. If, on the other hand, storage processes are affected, 

then it must be expected that interference will block the encoding of new 

information. However, information that has not been stored cannot be said 

to have been “forgotten.” 

There is, however, another major difficulty in examining Hypotheses 12 

and D2. This difficulty is due to the fact that a final loss of information can 

only be examined indirectly and only under certain controlled conditions. 

Without these controlled conditions, it will be impossible to reject the claim 

that forgetting is nothing other than the inability to find and/or retrieve 

stored information. The experimental control of search processes is a 

crucial prerequisite for the examination of Hypotheses D2 and 12. 

These considerations clearly show that interference and decay theory 

refer to very distinct aspects of memory processes. Whereas interference 

theory refers to the process of retrieving a code, decay theory (Hypothesis 

D2) focuses on processes operating within a code. 

2.2.1 Forgetting and Hypermnesia 

Everyday experience shows that information that appears to have been 

forgotten can sometimes be remembered at a later date. A well-known 

example of this is the “tip-of-the-tongue” phenomenon (R. Brown & 

McNeil, 1966), in which case the memory contents are temporarily unavail¬ 

able (cf. the “Poetzel-Phenomenon”, Poetzel, 1917). This phenomenon is 

known under various terms, including: trace storage versus trace utilization 

(Melton, 1963); availability versus accessibility (Tulving & Pearlstone, 1966; 

Roediger, 1974); retrievability versus availability (Bower, 1970) or cue 

dependent versus trace dependent forgetting (Tulving, 1974); hypermnesia 

(M. H. Erdelyi & Becker, 1974); and reminiscence (Madigan, 1976). In 

more recent research (Payne, 1986, 1987; Roediger & Payne, 1985), the 

term hypermnesia is used when referring to a situation in which a subject’s 

free recall performance increases with the number of attempts made. 

Reminiscence means that a certain item, forgotten at some earlier test date, 

can be remembered again at a later point in time. Both concepts, therefore, 

refer only to different aspects of one and the same phenomenon, as 

illustrated in Table 2.2. It goes without saying that the experimental 

investigation of hypermnesia or reminiscence requires that subjects do not 
receive any feedback during the test. 

Credit is due to Erdelyi and his collegues (M. H. Erdelyi & Becker, 1974; 
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Four Different Types 
TABLE 2.2 

of Results in a Multiple Recall Test 

Test 2 

Recalled Not Recalled 

Test 1 

Recalled 

Not recalled 

Remembering 

Reminiscence 

Intertest forgetting 

Forgetting 

M. Erdelyi, Buschke, & Finkelstein, 1977; M. H. Erdelyi & Kleinbard, 

1978; cf. the review in M. H. Erdelyi, 1982) whose research made 

hypermnesia a well-established phenomenon (Roediger & Payne, 1982, 

1985; Roediger & Thorpe, 1978). The extent of hypermnesia depends on 

how often free recall is tested and which type of stimulus material is used. 

M. H. Erdelyi and Kleinbard (1978) discovered that in the first test 

following the presentation of 40 pictures (slides of simple objects), on 

average, only 19 pictures were remembered. After Test 18 — 80 hours after 

the first test —the number of pictures remembered increased to 33, but did 

not undergo any further increase in the following six tests. This corresponds 

to a hypermnesia effect, that is, a relative increase in memory performance 

of 74% with respect to the first testing! The strength of hypermnesia is due 

not only to the number of repetitions, but also to stimulus modality and the 

way items are encoded: Pictures exert a more powerful hypermnesia effect 

than words, and words with imagery instructions, in turn, exert more 

powerful effects than words not provided with imagery instructions (M. H. 

Erdelyi, Finkelstein, Herrell, Miller, & Thomas, 1976). 

Hypermnesia is an interesting phenomenon in memory psychology. It 

demonstrates that memory performance increases with the length of the 

retention interval. This phenomenon allows for two different interpreta¬ 

tions. On the one hand, it may be assumed that the repeated recall attempts 

allow for a reconstruction of partially decayed codes. Or it can also be 

assumed that in the course of testing, subjects learn to use elaborated search 

or retrieval strategies that allow them to enlarge the relevant search area 

from one test to the next. 
Proof of the existence of hypermnesia is only relevant in evaluating 

Hypotheses D2 and 12, if it can be ruled out that the unavailability of an 

item is due to an incomplete search. In attempting to explain search 

strategies in free recall tasks, one generally starts out from the assumption 

that retrieval is based on two different processes. In attempting to retrieve 

an item, a subject first generates possible alternatives that are then 

recognized as previously stored (J. R. Anderson & Bower, 1972; Shiffrin, 

1970a, 1970b). Because subjects rarely make intrusion errors (i.e., subjects 

rarely report items that were not learned), these “generate-recognize” 
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theories assume that subjects use very strict “recall criteria” in selecting 

correct responses. If the threshold of the recall criteria can be lowered by 

using appropriate instructions, it should be possible —at the cost of 

intrusions —to expand the search area and to increase the extent of 

hypermnesia effects. 
Roediger and Payne (1985) addressed this question by providing different 

recall instructions. Subjects in one group received the usual instructions for 

free recall tasks, which consist of writing down as many words as possible 

in any order whatsoever, without guessing. Subjects in the second group 

were asked to guess, whereas a third group received an additional instruc¬ 

tion to list at least 50 words and, while doing so, to guess as often as 

necessary. Each group was shown the same 65 words. 

The results in Table 2.3 indicate that guessing does not have any 

significant effect on memory performance. If we start out from the 

plausible assumption that guessing enlarges the search area, then we come 

to the interesting conclusion that hypermnesia is not due to an increased 

efficiency of search processes. More importantly, however, this means that 

hypermnesia can only be explained by certain characteristics of the coding 

format. It could, for example, be only a matter of enhancing the accessi¬ 

bility of a code that increases with the number of recall attempts. But it 

seems just as plausible to assume that partially decayed codes can be 

“reconstructed.” 

These findings support the view that forgetting does not neccessarily 

mean the final and irretrievable loss of information. Another interpretation 

in support of this view can be traced to Ebbinghaus, who claimed that 

forgotten information can be learned more quickly than new information 

(see also T. O. Nelson, 1978). However, this interpretation is valid only in 

proven instances of reminiscence or hypermnesia. In contrast, instances of 

“intertest forgetting” may be seen as an indication of the loss of memory 

TABLE 2.3 
Hypermnesia, Search Area, and Guessing 

Mean Number of 

Recalled Words 
% 

Type of Task Test 1 Test 2 Test 3 Hypermnesia 

Free recall without guessing, 

Search area not extended 25.1 26.6 28.2 12.4 
Free recall with guessing, 

Search area extended 24.3 26.4 28.4 16.9 
Forced recall with guessing, 

Search area strongly extended 25.1 26.0 21A 9.2 

Note: Data from Roediger and Payne, 1985, Memory and Cognition, 13, p. 4. © 1985 by 

Psychonomic Society, Inc. Reprinted with permission. 
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information. An independent evaluation of each of the four cases shown in 

Table 2.2 is, therefore, another important prerequisite in assessing both 
Hypotheses D2 and 12. 

2.2.2 Controlling the Search Area 

The search area for free recall tasks can be controlled only with difficulty 

and, at best, indirectly. Paired-association paradigms present one possi¬ 

bility of assuring that the contents of the search area remain the same 

during all stages of testing. In this type of task, each item consists of two 

parts, a “stimulus” and a “response,” which subjects must associate. An 

exact definition of the search area is thus made possible by presenting the 

subject with the stimulus part. This, in turn, provides a clue as to how to 

retrieve the correct response. 

This method was used in the following four-part experiment by Klimesch 

(1979b), which included a learning stage, a first recall test, a distractor task, 

and a second recall test. In the first part of the experiment, the subjects were 

asked to remember an appropriate label for six different histograms, each 

consisting of seven columns. After a 100% learning criterion had been 

attained, the first recall test was carried out using the labels to retrieve the 

appropiate histogram. Subjects were then asked to draw the outlines of the 

histogram on a grid with seven columns and nine lines. Between the first 

and the second recall test, on average, a 36-min distractor task was carried 

out. This task consisted of comparing new but similar patterns with those 

already learned. During the second recall test immediately following the 

distractor task, subjects had to proceed in the same way as in the first recall 

task. 
This experiment was designed in an attempt to ensure that identical 

search areas could be used in both recall tests. Based on this procedure it 

may be assumed that memory performance reflects only the accuracy of the 

coding format but not the efficiency of the search processes. 

The accuracy of recall is measured by the extent to which the copy of a 

pattern differs from its original. Statistical analyses were carried out 

separately for each of the six patterns and for each of the 68 subjects and 

are based on a comparison of recall accuracy between the first and second 

test. Thus, 6 x 68 = 408 individual comparisons were carried out by using 

polynomial distributions. Based on the recall parameters estimated in the 

first test, it was then tested whether these corresponded to the distribution 

of recall errors in the second test. The results showed that an improvement 

in accuracy can be observed in 73 of the 408 comparisons. Thus, with 

respect to these 73 cases, there is a highly significant improvement in 

memory performance from the first to the second test. As a result, the 

assumption is confirmed that reminiscence also occurs if the contents of the 
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search area remain the same during both recall tests. However, the results 

also show that in 43 cases there was a highly significant decrease in recall 

accuracy. 
The evaluation of Hypothesis D2 (i.e., forgetting means the final loss of 

information), therefore, results in a paradox: Whereas Hypothesis D2 is 

contradicted by the 73 cases of reminiscence, it is confirmed by 43 cases of 

intertest forgetting. The findings, therefore, do not enable us to arrive at a 

general conclusion regarding the validity of decay theory. A similar 

argument — albeit with reversed signs —can be applied when evaluating 

interference theory. As the search areas were kept constant during both 

recall tests, interference processes do not adequately explain either reminis¬ 

cence or intertest forgetting. However, in order to explain intertest forget¬ 

ting, interference theory must rely on the hypothesis of altered search areas. 

The reason for this can be found in the basic assumptions underlying 

interference theory, whereby information once stored is never lost. Conse¬ 

quently, intertest forgetting observed in identical search areas clearly 

supports decay processes. 

2.2.3 Result of the Empirical Evaluation of 
Hypotheses D2 and 12 

The results described earlier illustrate a dilemma: Both forgetting theories 

can be partially confirmed and partially refuted. The cases of reported 

reminiscence at first appear to support the validity of interference theory. 

Closer examination, however, reveals that interference theory can explain 

reminiscence only if different search areas can be assumed. However, this 

assumption is not generally valid, as reminiscence has, in fact, been detected 

when search areas were kept constant (Klimesch, 1979b). The cases of 
intertest forgetting, on the other hand, appear to confirm decay theory, 

which, in turn, stand in total contradiction to the likewise confirmed cases 

of reminiscence. As in the discussion of Hypothesis D1 and II it once again 

becomes clear that neither of the two theories can be confirmed. 



The Failure of Traditional 
Forgetting Theories: 
Misleading Representational 
Assumptions 

Chapter 2 focused on the difficulties that arise in trying to test the 

predictions of decay and interference theory. We were able to demonstrate 

the paradox that forgetting theories can be partially confirmed and partially 

refuted. It is not surprising, therefore, that forgetting theories are seldom 

considered in recent research. Obviously, one is so convinced of their 

ineffectiveness that modifications of the existing approaches are not even 

attempted. The contradictions outlined previously are of such a funda¬ 

mental nature that we can only conclude that the basic assumptions 

underlying interference and decay theory are wrong. 

But the question must still be asked: What assumptions are responsible 

for the failure of traditional memory theories? In our historical survey (see 

chap. 1) we suggested that the absence of explicit representational assump¬ 

tions may be responsible for the poor success of traditional memory 

psychology. Does this argument also apply to forgetting theories? Is the 

absence or the insufficient consideration of representational assumptions 

also the reason for the contradictions outlined? 

3.1 REPRESENTATIONAL ASSUMPTIONS UNDERLYING 
TRADITIONAL FORGETTING THEORIES: THE 

TWO-PARAMETER MODEL OF MEMORY 

In examining which representational assumptions underly both forgetting 

theories, it becomes apparent that there are only vague notions regarding 

the structure of these assumptions, and these notions are exclusively 

23 



24 3. THE FAILURE OF TRADITIONAL FORGETTING THEORIES 

s(j) is the proba¬ 
bility to find in¬ 
formation unit j 
in memory. 

e(j) is the proba¬ 
bility that unit j 
is encoded or has 
not yet decayed. 

r(j) is the proba¬ 
bility that unit j 
can be correctly re¬ 
trieved from memory. 

product of two probabilities, the search and encoding probability. 

concerned with a differentiation between the contents of memory and 

search processes. Interference and decay theory can, therefore, be reduced 

to a two-parameter model of memory, in that the extent of memory 

performance depends only on the efficiency of search processes and the 

accuracy of storage. Only these two factors have been of overriding concern 

to us so far and are pictured in Fig. 3.1. The question of how memory codes 

are stored and structured is addressed neither by interference nor decay 

theory. Figure 3.1 demonstrates that, as a result of the basic distinction 

between search processes and memory contents, the extent of memory 

performance must be regarded as the product of two probabilities: search 

probability and the probability that the sought-after content has not yet 

decayed. The multiplication of both probabilities clearly shows that accu¬ 

racy of search and storage are independent processes. 

3.2 THE TWO-PARAMETER MODEL IS BASED ON THE 
IMPLICIT ASSUMPTION OF HOLISTIC CODES 

It is the lack of explicit representational assumptions about the coding 

format that characterizes the two-parameter model. As a result, implicit 

assumptions were adopted, which in this case focus on the assumption of 
holistic codes. 

The significance of this claim can best be demonstrated by considering 



THE COMPUTER METAPHOR 25 

the ways information is retrieved from memory. What type of information 

does a search process use to access a specific memory content? Basically, 

there are two possible ways. A search process either can use parts of a 

memory code (i.e., a “probe”) or a specific address to retrieve a code. In the 

first case we speak of a content-addressable search, in the second case of a 

location-addressable search. However, a content-addressable search can be 

defined only if there are explicit assumptions regarding the structure and/or 

elements of memory codes. A content-addressable search requires explicit 

assumptions about the way a match is defined between the search probe and 

the sought-after code. A location-addressable search, on the other hand, 

does not require explicit representational assumptions about the format of 

a code. However, it requires that the address of the location for the 

sought-after information be known before the search process begins. 

Consequently, the search process can be successful only if a code is 

characterized by a specific address. The crucial conclusion here is that a 

location-addressable search treats a code as a holistic unit. This fact is 

responsible for the implicit assumption of a holistic coding format. 

Because of the lack of explicit representational assumptions, the two- 

parameter model allows only for location-addressable search processes. 

This failure to draw explicit representational assumptions leads to certain 

restrictions: First of all, there is the implicit assumption of holistic codes 

that, in turn, makes it necessary to distinguish between “accuracy of search 

process” and “accuracy of storage.” Another important restriction is the 

independence of both parameters. Independence here means that the coding 

format cannot exert any influence on the search process. Within the context 

of the two-parameter model we arrive at the implausible conclusion that the 

high efficiency of human memory can be explained only by the character¬ 

istics of search processes, not, however, by the way information is 

represented. Finally, all questions regarding the composition and structure 

of memory merge into assumptions regarding search processes. 

This discussion is reminiscent of the distinction made between distributed 

and nondistributed memory storage. There is some resemblance between 

the concepts of holistic codes and nondistributed memory storage on the 

one hand and between component codes (see section 3.5) and distributed 

storage on the other hand. Chapter 11 refers to these issues within the 

context of connectionism and recent physiological approaches to memory. 

3.3 THE TWO-PARAMETER MODEL AND THE 
COMPUTER METAPHOR 

A comparison of the two-parameter model with the computer metaphor 

shows the similarity between both concepts. It turns out that the search 
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parameter corresponds to the term address, whereas the encoding param¬ 

eter corresponds to the term location. The address has the function of 

discovering that information which is stored in a particular location. The 

sought-after information can only be found if the address is known. The 

characteristics of the address are thus independent of the format by which 

information is stored at a certain location. 

Consequently, search processes are completely independent of the struc¬ 

ture of codes and the characteristics of their format can in no way influence 

the search process. In conventional computers, search processes function 

according to an “all-or-nothing” principle, that is, either the address is 

known and the sought-after information is found, or the address is not 

known and the sought-after information is not found. 

3.4 DEFINING THE TERM HOLISTIC CODE 

Thus far, we have discussed some interdependences between assumptions 

regarding search processes and the encoding format. It was emphasized 

that, whenever explicit representational assumptions are missing, the search 

process is independent of the characteristics of the encoding format, and, 

therefore, holistic codes must be assumed by default. The computer 

metaphor is a good example to demonstrate the interdependence between 
the type of search process and coding format. 

These considerations show clearly that, once holistic codes are assumed, 

addresses must be defined. Without an address, it is impossible to find the 

sought-after content. Thus, the following definition applies to holistic codes 

(Klimesch, 1986a, 1986b): The term holistic code is used whenever specific 

representational assumptions are not considered, or if the explicit assump¬ 

tion concerning a format that cannot be decomposed is drawn. 

In adopting holistic codes, we encounter the following restrictions: 

la. The search process is independent of the format of a code. 

lb. As a result of (la), the search process is also independent of the 
content represented by a code. 

lc. As a result of (la) and (lb), search processes rely on well-defined 
addresses. 

ld. As a result of (lc), a memory search follows an “all-or-nothing” 

principle, that is, if the address is known, then all information stored at that 

particular location can be recalled. It is impossible to access parts of a code 
directly. 

le. If forgetting is understood as a kind of decay, we must assume —if 

additional assumptions are not taken into account —that all contents of a 
code decay at the same rate. 
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However, there are further consequences arising out of the aforemen¬ 

tioned restrictions. For example, on the basis of restrictions (la) and (lb) it 

follows —as emphasized earlier —that the structure and efficiency of 

memory can be explained only by assumptions concerning search processes, 

but not by those concerning the coding format. As a result of restriction 

(Id), on the other hand, all the information stored in one code must be 

available as soon as the code is retrieved. It is inconceivable that only parts 

of a code can be retrieved. This is because it is only the availability of the 

address that is important in a successful search. 

It is interesting to see how the avoidance of explicit representational 

assumptions inevitably leads to a number of implausible restrictions and 

prevents a better understanding of human memory. The next section 

considers component codes that are the converse of holistic codes and 

provides the basis for a considerably less restrictive and more plausible 
theory of memory. 

3.5 DEFINING COMPONENT CODES 

In contrast to holistic codes, the definition of a component code is more in 

line with our considerations of the representational problem. The term 

component code is used whenever explicit representational assumptions 

determine that the coding format consists of a structure of components. 

The information stored in a component code is thus represented not only 

by the components themselves, but also by a specific structure or relation 

between them. In contrast to holistic codes, the definition of component 

codes makes clear that assumptions regarding their format must consider 

the following two aspects: the components themselves and their structure. 

In contrast to holistic codes, component codes lead to different restric¬ 

tions. They enable assumptions (or predictions) that would have led to 

contradictions, had holistic codes been adopted. The following assumptions 

are, for example, only compatible with component codes: 

2a. The search process depends on the coding format. 

2b. Asa result of (2a), the search process also depends on the type and 

content of information represented by a code. 

2c. As a result of (2a) and (2b), addresses need not be specified. 

2d. As a result of (2c), search processes do not follow an all- 

or-nothing principle: It is thus possible to have immediate access 

to any part of a component code. 

2e. If forgetting is due to a process of decay, it becomes clear that 

different components can decay at different rates. 



28 3. THE FAILURE OF TRADITIONAL FORGETTING THEORIES 

Assumptions (2a), (2b), and (2c) reveal a close interdependence between 

the coding format and search processes. For example, let us consider the 

case in which interference processes make some parts of a component code 

less accessible. Now, assumptions (2c) and (2d) allow for the possibility that 

even when no information has decayed and the search process has led to the 

discovery of the correct memory content, only parts of and not the entire 

information stored in the code may be available. 

The different conclusions arising out of the definition of holistic and 

component codes make it clear that assumptions regarding the coding 

format have an immediate impact on the properties of the entire information¬ 

processing system. Theories not considering these restrictions run the risk of 

relying on contradictory assumptions. 

3.6 HOLISTIC CODES: CONTRADICTORY EXPERIMENTAL 
FINDINGS 

The type of coding format can only be inferred, if the predicted effects of 

a holistic or component code are empirically tested. In attempting to test all 

predictions for both holistic and component codes, exact definitions 

regarding the coding format are of fundamental importance. However, this 

attempt is successful only if complex representational assumptions are 

considered within the framework of network models (chaps. 5-9). Other¬ 

wise, it is impossible to grasp the interdependence between search processes 
on the coding format. 

This section considers only those findings that refer to forgetting. In 

doing so, it becomes obvious that search processes do not follow an 

all-or-nothing principle (restriction 2d), and that the components of a code 

may decay at different rates (restriction 2e). The experiments relevant to 

this question are basically derived from the study of three different areas: 

multirate forgetting, the “tip-of-the-tongue” phenomenon, and hypermne- 

sia. 

In an experiment on multirate forgetting, Jones (1979) showed his 

subjects a series of color slides, each of which pictured an object of a 

particular color and spatial position. Subjects were asked to remember not 

only the form these objects took, but also their color and spatial position. 

The following recognition task examined which of the three object com¬ 

ponents (form, color, or spatial position) were best remembered. The 

results confirm assumption (2e) and show that the subjects forget different 

components of a code at different rates. Jones discovered that the color and 

position components are forgotten twice as fast as the form components. 

This finding, therefore, clearly argues against the assumption of holistic 
codes. 
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The “tip-of-the-tongue” (TOT) phenomenon is a good example with 

which to demonstrate that memory search does not follow an all-or-nothing 

principle. If, for example, individuals wish to remember the name of a 

friend, knowing exactly where and when they last met, then they also know 

that it would be possible to immediately identify the name provided it is 

related to them. R. Brown and McNeill (1966) studied the TOT phenom¬ 

enon and discovered that it was possible for the subjects to give accurate 

details of the sought-after name (see A. S. Brown, 1991, for a more recent 

review). Most subjects were in a position to give the first and last letter as 

well as the number of syllables. It is also important that all subjects knew 

the meaning (semantic information) of the word. These results support 

prediction (2d). They enable us to infer that components of a code can be 

accessed directly. 

Studies on hypermnesia show that stored information may be temporarily 

unavailable, and that situations may arise in which more is remembered at 

a later test date than an earlier one. As we have emphasized, the phenom¬ 

enon of hypermnesia (see section 2.2.2) is only relevant for our discussion, 

if it can be shown that different search areas are not the cause of improved 

memory performance. The results arrived at by Klimesch (1979b) show, 

however, that hypermnesia also develops when identical search areas are 

provided in all of the different recall attempts. Thus, this result also 

supports prediction (2d). It documents that even if none of the information 

has decayed and the search process has led to the discovery of the correct 

memory content, all the information stored in the code need not be 

available, as is postulated in prediction (Id). This phenomenon can be 

explained by the assumption that individual components of a code are 

temporarily unavailable, but can be recalled at a later date. 

3.7 THE ASSUMPTION OF HOLISTIC CODES IS 
RESPONSIBLE FOR THE FAILURE OF TRADITIONAL 

FORGETTING THEORIES 

The aim of this chapter was to show that interference and decay theory are 

based on the same implicit representational assumptions, which can best be 
described by a two-parameter model of memory. According to this model, 

memory performance depends on two independent parameters, the accu¬ 

racy of search and storage (see Fig. 3.1). 
In a subsequent step, we demonstrated that the two-parameter model is 

based on the assumption of holistic codes. We can conclude this because 

codes are treated as functional units. Consequently, representational as¬ 

sumptions are meaningless within the framework of the two-parameter 

model. In all cases in which the predictions of an information-processing 
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model are completely independent of the coding format, holistic codes must 

be assumed by default. 
Both forgetting theories are based on the two-parameter model and are 

therefore also based on the implicit assumption of holistic codes. Empirical 

results reported up to now have shown, however, that the conclusions and 

predictions arising out of holistic codes cannot be confirmed. We are, 

therefore, inclined to accept that the assumption of holistic codes and other 

misleading representational assumptions about the format of memory codes 

are at the core of the failure of both theories. Arguments put forward in the 

next chapter provide further evidence for such an interpretation. 



4 STM Codes: Their Structure 
and Decay 

The assumptions underlying the encoding format command a key position 

in cognitive psychology, because they are of primary importance for the 

understanding of cognitive processes. If explicit assumptions are not taken 

into consideration, theories are put forward that rely solely on the implicit 

assumption of holistic codes, and are thus identical with either the 

two-parameter model or some variant of it. 

This chapter is concerned with the structure of short-term memory (STM) 

codes and starts out from the basic observation that assumptions on the 

coding format must be guided by the most important characteristics of the 

entire information-processing system. The next section, therefore, begins 

with a discussion of some of the most fundamental principles of informa¬ 

tion processing. Following this, we want to show that the format of STM 

codes reflects basic characteristics of the entire information-processing 

system. 

4.1 FUNDAMENTAL PRINCIPLES OF HUMAN 
INFORMATION PROCESSING 

From the very beginning, cognitive psychology was concerned with the 

study of different stages of information processing. These studies led to the 

important discovery that before a stimulus can be recognized it must 

undergo a complex sequence of perceptual encoding processes. Thus, at 

different levels of processing, different coding formats must be assumed; 

these are featured in the model outlined in Fig. 4.1. This model is based on 
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Processing stages 
in the 

SENSORY REGISTER 

Processing stages Processing stages 
in in 

SHORT-TERM MEMORY LONG-TERM MEMORY 

FIG. 4.1. Hypothetical sequence of processing stages in human memory. 

the idea that basic aspects of human information processing can be 
explained by an interaction of three different memory systems: the sensory 
register, STM, and long-term memory (LTM). 

The flow chart in Fig. 4.1 may, however, give rise to two misleading 
impressions. The first refers to discrete “encoding stages,” which are most 
likely continuous in nature. The second refers to the way in which these 
stages are connected: Instead of the linear-hierarchical structure suggested 
by the flow chart, an interconnected structure is to be assumed. These 
misleading impressions are due to the form of presentation and are not 
inherent in the ideas underlying the model. Although we have to accept 
them for the sake of simplicity, we must not confuse them with assumptions 
intending to explain human information processes. 
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Peripheral encoding stages have been studied intensively, especially in the 

area of visual information processing (cf. Breitmeyer, 1984, on masking 

experiments; Marr, 1982, on simulation approaches). It is the general 

consensus that their task is to extract elementary features, such as line 

segments and contures (encoding stage 1 in Fig. 4.1). The results of Hubei 

and Wiesel’s work are especially impressive because they show that in the 

visual cortex the orientation of line segments is encoded as an elementary 

feature enabling a first draft of a visual code (e.g., Hubei, 1988; Hubei, 

Wiesel, & Stryker, 1978). Peripheral processing stages are generally viewed 

as running parallel as well as being autonomous (Broadbent, 1958; Duncan, 

1985; cf. Kahnemann, Treisman, & Burkell, 1983; Schneider & Shiffrin, 

1977; Shiffrin & Schneider, 1977, 1984; LaBerge, 1981). Even the notion 

that the result of peripheral coding stages is held for a short period in a 

special store (encoding stage 2 in Fig. 4.1) is generally accepted. In visual 

modality, this store is referred to as “iconic memory” (Sperling, 1960) or 

generally as “sensory register” (Atkinson & Shiffrin, 1968, 1971). The most 

important tasks of the sensory register are to coordinate the analysis of 

sensory information carried out at different rates, and to allow higher 

cognitive processess to have access to the results of these early encoding 

processes. 
The sensory register is characterized by two important features: an 

especially high storage capacity and an extremely short storage duration of 

roughly 200 ms to 300 ms. These features were examined using the 

partial-report technique introduced by Sperling (1960) and Averbach and 

Coriell (1961). It requires the tachistoscopic presentation of a series of 

stimulus pairs consisting of a display of stimuli arranged in the form of a 

matrix, and a marker that appears after a well-controlled interstimulus 

interval. The marker indicates a certain position of a stimulus in the 

previously shown display. The exposure times for both the display of 

stimuli and the marker are extremely short, and lie within a range of about 

50 ms. The subject’s task is to name the marked stimulus. This task can be 

conducted almost perfectly even for very large stimulus matrixes. The only 

prerequisite is that the marker appears within the limits of the storage 

duration of the sensory register (Chow, 1985; Coltheart, 1980; Crowder, 

1978; Long, 1980). 
This result argues convincingly for the assumption that only those 

contents of the sensory register can be identified on which selective 

attention is focused (cf. encoding stages 2, 3, 4, 5, 5a, 5b). STM and 

selective attention are subject to massive limitations in capacity, and, 

therefore, only a small part of the information stored in the sensory register 

can continue to be processed. The results derived from the whole-report 

technique support this notion. Here, in contrast to the partial-report 

technique and under otherwise identical conditions, no marker is presented. 
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The subjects have the task of reporting as many stimuli as possible, but now 

are capable of recalling only approximately five stimuli, regardless of the 

size of the stimulus matrix. These and similar findings confirm the notion 

that it is the limited capacity of STM that is responsible for this result. 

Expectancy (encoding stage la) and selective attention (encoding stage 3) 

decide, within the limits of STM, which stimuli can be recognized and 

remembered. 

The focus on the transition from peripheral processes to those controlled 

by selective attention has been central to cognitive psychology since the 

classic works of Sperling (1960). The differences between peripheral 

processes (cf. encoding stages 1 and 2) and those controlled by selective 

attention (Schneider & Shiffrin, 1977; Shiffrin & Schneider, 1977, 1984; 

Sternberg, 1969) have been well-documented. Recent research, however, 

deals more with the principles on which attention processes are based 

(Allport, Tipper, & Chmiel, 1985; Duncan, 1985; Kahneman et al., 1983; 

Shiffrin & Schneider, 1984; Treisman, 1986a, 1986b; Treisman & Gelade, 

1980; Treisman & Kahneman, 1985; Treisman & Paterson, 1984). Treisman 

and her colleagues were able to show, for example, that those processes 

extracting elementary visual features (e.g., the color and angle position of 

lines) run parallel and without capacity limitations. However, complex 

stimuli made up of elementary features are quite capable of making 

demands on processing capacity and can thus probably only be identified 
serially. 

Which encoding processes lead to the identification and recognition of 

stimulus information? In answering this question, we start from the notion 

that it is the knowledge stored in our LTM that allows us to identify and 

recognize sensory information (cf. encoding stages la, lb, 4, 5). According 

to this notion, there are certain structures stored in LTM that enable us to 

identify and recognize stimuli (cf. encoding stage 4). Shiffrin and Geisler 

(1973) made this very clear: “The process of encoding is essentially one of 

recognition: the appropriate image or feature is contacted in LTM and then 
placed (i.e., copied) in STM” (p. 55). 

This view of coding as a process of recognition is of fundamental 

importance. It leads to the conclusion that this process runs primarily 

between the sensory register and LTM, but not between the sensory register 

and STM. Sensory information received and stored in the sensory register is 

compared to structures (schemas and prototypes) that are stored in LTM 

(encoding stage 4). The result of this comparison (encoding stage 5) is 

transferred to STM (encoding stage 6), and it is not until this point that 

there is a conscious awareness and recognition of the stimulus. There is a 

prerequisite for this, however. The stimulus must have been presented long 

enough and the extent to which a stimulus matches the corresponding LTM 

structures must be sufficiently large. If we neglect for the moment the 
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selectivity of attention and expectancy as well as capacity limitations, then 

it becomes clear that STM is not directly involved in the identification of a 

stimulus. Only the result of this process is made available to STM. From 

this stage onward the subject has full control over how to proceed with the 

recognized stimulus (encoding stage 8 and 9). 

The following four characteristics are important in describing STM: its 

limited capacity (Baddeley, Scott, Drynan, & J. C. Smith, 1969; Broadbent, 

1958, 1975; Brown, 1958; MacGregor, 1987; Miller, 1956; Murdock, 1964), 

its primarily serial way of processing (cf. the “conveyor-belt model” by 

Murdock, 1974, 1980), its importance as temporary-working store (Badde¬ 

ley, 1981; Daneman & Carpenter, 1980), and its control processes (Atkinson 

& Shiffrin, 1968; Baddeley, 1981). One important control process of STM 

is the encoding of episodic information (cf. encoding stage 7 and Fig. 4.1). 

Although the question of whether or not episodic information is stored 

separately from semantic information is controversial, the importance of 

the distinction between these two types of information (cf. Tulving, 1983, 

and the tri-code theory in J. R. Anderson, 1983a) is well accepted. It should 

be noted that episodic information is not always stimulus-related as it is 

with emotional and mood-related information. In the framework of our 

model, their importance lies primarily in the control processes of STM 

(Klimesch, 1989). 

4.1.1 Interactions Between Sensory Processing and 
the Structure of LTM 

The model outlined in Fig. 4.1 is based on the important assumption that 

structures stored in LTM are used to identify sensory information. As a 

result of this close interaction between LTM and the sensory register, it is to 

be assumed that sensory codes and those LTM structures used in stimulus 

identification must have a compatible encoding format. This does not, 

however, mean that their format is identical. The findings on the sensory 

register already discussed have shown that the sensory codes rich in 

information decay extremely quickly, and that it would, therefore, be 

wrong to equate them with LTM codes. Sensory codes are the result of 

several processing stages. The necessity for a compatible coding format 

arises only at the transition between the sensory register and LTM. 

The close interaction between sensory processes and the structure of LTM 

has been pointed out repeatedly (Finke, 1980; Shepard & Podgorny, 1978; 

Weber, Hochhaus & W. D. Brown, 1981). Not only theoretical consider¬ 

ations support this notion, but so do experimental findings gained from 

studies on the symbolic-distance effect and mental rotation and imagination 

tasks. 
As is well known from psychophysics, a logarithmic function describes 
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the relationship between the perceived and physically defined intensity or 

magnitude of a stimulus. Surprisingly, experiments on the symbolic- 

distance effect showed a similar logarithmic relationship, if stimuli were not 

physically present, that is, were not displayed, but instead had to be 

compared in mind (cf. Moyer & Landauer, 1967, and the review in Shepard 

& Podgorny, 1978). For example, in an experiment conducted by Moyer 

(1973), pairs of animal names were presented and subjects asked to indicate 

as quickly as possible which of the two animals is in reality the larger one. 

In a subsequent rating experiment, subjects had to estimate the actual size 

of the animal. The results show that the reaction time in judging the size 

difference was shorter, the more pronounced the size difference was in 

reality. In addition, Moyer (1973) showed that the distribution of reaction 

times —as a function of size difference between animal pairs —coincided 

with a logarithmic relationship, as is known from psychophysics (cf. 

Fechner’s law and, more recently, Welford, 1960). These and similar 

experiments demonstrate that those laws originally found to describe 

sensory processes can also be applied even when the stimuli to be judged are 

not physically present, but must be recalled from LTM. 

A similar conclusion can be drawn from experiments on mental rotation 

and imagination. Experiments have repeatedly confirmed that mental 

operations, in which the stimuli are only imagined, are essentially con¬ 

ducted as if the stimuli were physically present (cf. the review by Kosslyn & 

Shwartz, 1981, as well as Finke, 1986). 

These results point to the important fact that the term coding is by no 

means only valid for perception. Even processes that run without sensory 

input, as for example the mental-rotation or size-comparison tasks, lead to 

the construction of codes in LTM. Coding is, therefore, an elementary 

process that is not only significant for perception. On the contrary, coding, 

perception, memory, and thought processes are phenomena that interact 

directly and cannot be described or understood independently of each 
other. 

4.2 THE ENCODING FORMAT OF STM CODES 

The discussion of our model in Fig. 4.1 has shown that the format of a code 

formed on the receptor level is changed in subsequent encoding stages. It is 

thus plausible to assume that the format of a STM code reflects important 

processing principles of the entire system. Therefore, representational 

assumptions can also be regarded, in a wider sense, as assumptions 

underlying the structure of the information-processing system. 

Now consider the question of the structure and elements of STM codes. 

A simple means of arriving at an answer is the concept of levels- 



ENCODING FORMAT OF STM CODES 37 

of-processing by Craik and Lockhart (1972). According to this view, the 

processing of stimuli runs through a series of hierarchically ordered 

processing (coding) stages ranging from sensory to semantically abstract 

processes (cf. Broadbent, 1977). 

Based on this concept and according to the model described in the 

previous section, the format of a STM code is assumed to reflect these 

coding stages. Each component of the code being created is the outcome of 

a coding stage. The number of coding elements is a function of demands 

placed on attention and on the capacity of STM. The more attention and 

the more capacity of STM contribute to the perception of a stimulus, the 

more (a) encoding stages are addressed, (b) components will be created, and 

(c) exact the memory representation will be. We can now assume the format 

of the code reflects the structure existing between the processing stages. If, 

for example, a code is created by a hierarchically ordered sequence of 

processing stages, then the format of the resulting code will also consist of 

hierarchically structured coding components. The coding format is, there¬ 

fore, a result of that particular cognitive structure that determined the run 

of information processing during encoding. This definition shows very 

clearly that a code depends not only on the physical characteristics of the 

stimulus, but is equally dependent on the processing principles of the 

cognitive system. Figure 4.2 shows a hypothetical example of a component 

code representing a word. 

Other important characteristics of a component code can be discerned in 

Fig. 4.2: The individual components refer to different aspects and are to a 

great extent redundant. The word code can be reconstructed out of the 

semantic code, the letter code can be reconstructed out of the word code, 

PROCESSING STAGES CODING COMPONENTS 

FIG. 4.2. Processing and encoding a visually presented word. The result of each 
processing stage is an element of the respective code, created in STM. 
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and the sensory code can be reconstructed out of the letter code. As long as 

all components of a code are available and each component is directly 

accessible, then —even if individual components are already decayed —they 

can be reconstructed. 

The following assumptions state more precisely what is understood by the 

structure and the elements of a component code in STM: 

1. The components are the outcome of different encoding stages. 

2. The structure of the code arises out of the structure that also connects 
the processing stages with each other. In other words, the structure of a 

code is the same as the cognitive structure that was already active in 

processing the stimulus. 

In the first chapter, coding was understood to be the process of 

transformation of a stimulus into a certain format of a memory represen¬ 

tation. Now we are in a position to state this more precisely. The 

transformation of sensory stimuli occurs by means of a structure of 

particular processing stages, and the format of the code is a copy of that 

particular structure of processing stages that might vary according to 

certain demands. This expanded definition makes clear that an under¬ 

standing of the elementary characteristics of a code can only be achieved, if 

the structure of the entire information-processing system is taken into 

consideration. 

4.3 THE COMPONENT DECAY MODEL: AN ATTEMPT AT 
A CONSISTENT INTERPRETATION OF THE CAUSES 

UNDERLYING FORGETTING 

If one accepts the notion that storage is as economical as possible, then it 

would be undesirable to store all and, on top of that, redundant compo¬ 

nents of a code. It is significant, however, that each piece of relevant 

information is preserved for a longer period. That which is relevant and 

important is determined by the processing goal. For example, if someone 

reads a text, conture elements, letters, and words have to be identified in 

order to understand the meaning of a text. Thus, with respect to the 

processing goal “understanding a text,” the desired level or “depth” of 

encoding is the semantic level that is the “deepest” in this case. Hence, that 

which is to be remembered are not contures, letters, and words, but rather 

the semantic information derived from these. The opposite holds true for 

the processing goal “proofreading,” in which shallow processing stages are 

focused on in order to detect spelling errors. In both examples the same sort 

of sensory code must be formed, but less components will be created at the 
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level of STM in the case of proofreading than in the case of normal reading. 

It is, therefore, also to be expected that the proofread text will be forgotten 

much more quickly than a text read normally. 

We assume that a code in STM is subject to an autonomous decay process 

and “shallow” coding components decay faster than “deep” ones. The 

example cited earlier is designed to underscore the plausibility of this 

assumption: The sensory word code decays very quickly, the semantic code, 

on the other hand, is preserved the longest. If a component code is 

retrieved, then it appears obvious to assume that the search process starts at 

the deepest level. The assumptions discussed here are depicted in Fig. 4.3 in 

the example of a “coding vector” comprising n components. 

The component decay model is not only in a position to explain the 

predictions of traditional decay theories but also those of traditional 

interference theories. Its uniqueness lies in the fact that interference 

processes can be described as a consequence of decay processes. Conse¬ 

quently, it is possible to combine the two contradictory Hypotheses II and 

D2 into a single hypothesis. More components decay with the passing of 

time, and, therefore, the interference and confusion tendency in the 

retrieval of the code also increases. The effect of item similarity can also be 

explained very easily within the framework of the component decay theory: 

The more alike two stimuli are, the more alike are the components of the 

code. As long as none of the components have decayed, it is possible to 

differentiate between the two codes without difficulty. With the beginning 

of decay, however, it becomes increasingly difficult and finally impossible 

to differentiate between both codes. 

Because shallow codes decay faster than deep ones, predictions can also 

be made with regard to the type of similarity. The two words hat and rat 
show partially identical components on the comparatively shallow phonemic- 

graphemic coding level. A single letter indicates the word in question. 

However, on the semantic level the two codes do not share a single 

component: The one word describes an article of clothing, the other an 

animal. Now, if the processing goal consists of recognizing the meaning of 

a word, then the phonemic-graphemic similarity of the words should not 

Sensory 
information 

Semantic 
information 

e Cl) . . e (n) 

Decay Search process 

FIG. 4.3. Decay and search processes operate in opposite directions. Sensory 
information decays faster than semantic information. On the other hand, semantic 
information can be retrieved faster than sensory information. 
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lead to any errors of confusion: The sensory code may have already 

decayed, but the semantic code completely suffices in order to differentiate 

between both memory representations. 
Finally, let us address the issue as to how the component decay model 

deals with the question of whether or not forgetting means the final loss of 

memory (cf. Hypotheses D2 and 12 in chap. 3). In the first place, one would 

think that our model only agrees with the traditional decay theories and not 

with the interference theories. However, this view is wrong because, on the 

one hand, it can be assumed that a partially decayed component code can 

be reconstructed, and, on the other hand, that deeply encoded components 

are to the greatest possible extent decay resistant. 

It should be noted that the process of reconstruction is only conceivable 

if component codes are assumed. The components as well as the structure 

contain the redundancy necessary to reconstruct parts of a code. Assume, 

for example, that someone wants to remember a name and the following 

components are at various stages of decay: (a) the sensory and letter code 

have completely decayed, (b) the word code to a great extent, and (c) the 

semantic code only partially. It is still possible to remember the first and last 

letters, the approximate length of the word, and that the sought-after word 

describes a city in Northern Germany. These clues may suffice in order to 

reproduce the sought-after name. 

If parts of a holistic code are lost, then —if no additional assumptions are 

drawn —there is no way of reconstructing lost information. The format of 

a holistic code does not contain any redundancy that could be used in the 

reconstruction of lost contents. Consequently, decay means the final loss of 

information in this case. Component codes, on the other hand, allow 

decayed information to be reconstructed. Here then, decay does not 

necessarily mean the final loss of memory contents. 

We have to emphasize that the aforementioned conclusions are only valid 

if no external information is available for reconstruction, as is, for example, 

the case in a recognition task. Here, if a pairwise presentation is conducted 

during testing, subjects are allowed to compare their memory trace with a 

target. A partially decayed representation of the target may be recon¬ 

structed by matching the pattern of the partially decayed code with the 

physically presented target. In this particular case even a holistic code could 

be reconstructed to some extent. In contrast to holistic codes, however, 

component codes can be reconstructed even in a case in which no additional 

external information is available. 

We thus arrive at the important conclusion that it is the format of a code 

that determines whether decay results in the final loss of memory contents. 

This underscores the crucial status of representational assumptions. Within 

the framework of traditional forgetting theories, it would have been 

impossible to state that decay does not inevitably lead to a loss of 
information. 



5 Networks Theories: Basic 
Assumptions on the Structure 
of LTM 

In chap. 4 we focused on the interdependence between information 

processing and the formation of STM codes. It was assumed that the 

processing results of individual encoding stages are the components of STM 

codes, and the structure that determined the sequence of the encoding stages 

during the processing of the stimulus is also the structure that interconnects 

the individual components of a STM code. This view was discussed using 

the model represented in Fig. 4.1. 

This chapter is concerned with the way in which information is stored in 

LTM. Thereby, we have to differentiate between two aspects, one con¬ 

cerning the structure and the other the type of information stored. Network 

models refer in their assumptions almost exclusively to the structural aspect, 

whereas those aspects regarding content are, with few exceptions, only dealt 

with in passing. One exception is J. A. Anderson’s (1983a, p. 45) tri-code 

theory. It assumed that knowledge representation in LTM is based on three 

different types of codes: (a) temporal strings that record the run of events, 

(b) spatial images that represent — above all, but not exclusively—visual 

knowledge, and (c) abstract propositions that serve to represent semantic 

knowledge. This chapter is primarily concerned with the structural aspect, 

so a clarification of the types of information distinguished in LTM is useful. 

In chap. 4, when dealing with STM codes, we were concerned with 

different levels of coding stages. In LTM, however, we focus exclusively on 

the deepest level, that is, the semantic level. The reason is obvious. Consider 

the process of perception. It is always directed toward a certain processing 

goal, which in virtually every case is the comprehension of perceived 

information and, therefore, the semantic level. Semantic encoding must not 

be understood as a marginal process or a special case alongside other 

encoding processes. Here we are concerned with a form of representation 

that allows us to integrate and understand information from the various 

sources of sensory information. According to this view, semantic encoding 

is the deepest form of encoding in human information processing. There- 
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fore, it is plausible to assume that knowledge stored in LTM is essentially 

structured alongside semantic dimensions. 

In this sense, “semantic information” is synonymous with the “deepest” 

level of encoding in memory and corresponds to E. E. Smiths (1978) 

definition: “At the broadest level, semantic memory is assumed to be our 

store for meaningful material, be it our permanent knowledge of the 

meaning of words or our transient memory of a particular sentence that was 

presented to us in a laboratory experiment” (p. 1). According to this vague 

definition, all network theories can be described as semantic memory 

theories. However, there are more restrictive definitions, two of which have 

gained an important influence. On the one hand, there is the differentiation 

between semantic and episodic information (Tulving, 1972, 1983, 1984, 

1986) and, on the other hand, there is the notion that only the meaning of 

concepts should be referred to as semantic information (e.g., Kintsch, 

1980). 

According to Tulving, semantic information comprises our permanent 

knowledge on language and all different aspects of general knowledge. 

Episodic information, on the other hand, refers to autobiographical 

knowledge structured according to context and time (c. f. the “temporal 

strings” of J. R. Anderson, 1983a). This definition is more restrictive than 

the one suggested earlier. Semantic information, in the sense of the deepest 

form of encoding, is more general and less specific than Tulving’s term 

semantic information. The narrowest and most restrictive definition is the 

one equating semantic with conceptual information. Figure 5.1 outlines the 

relation between three different definitions of semantic information. 

The next sections demonstrate that the network models rely heavily on 

the assumption of a hierarchically structured coding format. 

FIG. 5.1. Different meanings of the term semantic information. 
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5.1 BASIC CONCEPTS 

Network theories are based on two different types of assumptions: struc¬ 

tural and processing. Structural assumptions refer to the geometric charac¬ 

teristics of memory networks. They specify how information is stored or 

represented in memory. Processing assumptions describe how information 

is retrieved and recalled. Both assumptions rely on each other. It is possible 

to point to the interaction that exists between them only when both are 

explicitly defined (cf. the definition of holistic and component codes in 
sections 3.4 and 3.5). 

Processing assumptions and their interaction with structural assumptions 

are discussed within the framework of different network theories. Before 

doing this, however, we must define some basic terms concerning structural 

assumptions. 

5.1.1 What Are Memory Networks? 

Memory networks are inferred structures designed to explain how informa¬ 

tion is stored and recalled. They are built on two different classes of 

elements: nodes and connecting links. Both elements form a structure 

known as the memory network. Its graphic representation is by no means a 

defining feature for network theories. Complex structures can also be 

described using a mathematical calculus or by a simulation language. 

However, as most network models allow for a clear and easy graphic 

representation, this is the form of representation we favor here. 

In a network, information is represented by links as well as nodes. The 

question of whether links or nodes store redundant information depends on 

the coding rule. For example, consider the Huffmann tree depicted in Fig. 

5.2. This well-known binary coding structure is a good example of a 

FIG. 5.2. The Huffman tree as an example for a binary and strictly hierarchical 

network. 
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redundant network: The links leading from a node carry information which 

is also represented in that particular node. 

In the binary network of Fig. 5.2, there are two types of links: those 

carrying the information “zero” and those carrying the information “1.” 

Each node represents a different number. The structure is hierarchical, so 

the more encoding stages are encountered, the more complex is the 

information that can be represented. Only binary numbers can be repre¬ 

sented on Level 1, but by Level 3 octal numbers can be stored. 

Although psychological theories are no longer based on a binary coding 

format (cf. Human Associative Memory [HAM] by J. R. Anderson & 

Bower, 1973), the example in Fig. 5.2, nevertheless shows all the essential 

characteristics of a memory network. It demonstrates that information can 

be represented both by nodes and links, and that networks become more 

complex as more information is stored in them. 

The principle of hierarchical coding, as pictured in Fig. 5.2, forms the 

elementary basis of computer languages. The extent to which psychological 

memory theories are oriented toward this principle can be seen in the 

example of Anderson’s Adaptive Control of Thoughts (ACT) theory (J. R. 

Anderson, 1976). ACT, as a modified version of HAM (J. R. Anderson & 

Bower, 1973), is concerned with the question of how propositions are 

represented and processed as basic knowledge units in human memory. 

Complex linguistic propositions are used in examining ACT; an example is 

given in Fig. 5.3. A comparison of Figs. 5.2 and 5.3 reveals two essential 

differences: The coding principle in Fig. 5.3 is neither binary nor redun¬ 
dant. 

ACT is based on the assumption that sentences are represented by 

subject-verb relations. The node connecting the subject link with the 

predicate link is the fact node. It represents the fact that is expressed by a 

sentence. The verb —here represented by the predicate node —is further 

FIG. 5.3. Memory network for the sentence “Mary opens the door with a key.” From 
Language, Memory, and Thought (p. 161) by J. R. Anderson, 1976. © 1976 by 
Lawrence Erlbaum Associates. Adapted with permission. 
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specified by argument links (cf. the argument links R, A2, and A3 in Fig. 

5.3). In the simulation of ACT, fact nodes correspond to a function with 

the two arguments “subject” and “predicate.” The verb, itself an argument 

of the fact function, is represented by a function comprising a certain 

number of arguments, their exact number being determined by the meaning 

of a sentence. In our example, argument A2 refers to the object (“door”), 

A3 to the instrument (“key”), and R to a specific relation existing between 

the subject and the object (here the subject “opens” the object). 

As this example indicates, the graphic representation of a network can 

also be used to illustrate the structure of a simulation program. A node in 

the graphic representation corresponds to a function in the simulation 

program, whereas a link corresponds to an argument of the function. 

5.1.2 Memory Networks, Codes, Coding Format 

The term coding—at least in the way it has been used up to now —may have 

created the impression that codes are units independent of each other. 

However, in network theories it can easily be shown that codes are not only 

closely interrelated, but also partly overlapping structures. Depending on 

the processing goal, codes may be assembled from different parts of a 

complex memory structure. 

Consider the code of the sentence: “Mary opens the door with a key” in 

Fig. 5.3. The code of the sentence can, in turn, be part of a more complex 

memory structure. There may be further propositions —for example, about 

“Mary” (what kind of job she has, where she lives, etc.) or about “key” or 

“door” —which are connected with the code. Conversely, however, the code 

representing the sentence is based on a number of other codes that may refer 

to the lexical and semantic information of the words appearing in the 

sentence. Which of these codes (i.e., which parts of the network) are 

searched depends exclusively on the goal of the search process. 

Codes can be regarded as parts of a memory structure. Of which parts 

they consist is determined by the type of cognitive operations that take place 

in memory. The given structure within a code is referred to as the coding 

format. 

5.1.3 Limiting Spreading Activation and Search 
Area 

Network theories describe a memory search by a process of spreading 

activation. This assumption, however, evidently so plausible, leads to a 

fundamental problem unavoidable by any memory theory: How can it be 

explained that spreading activation is confined to the relevant part of the 

network? Or, put another way: Which assumptions prevent a search process 



46 5. NETWORK THEORIES: THE STRUCTURE OF LTM 

from triggering off an “epileptic seizure” in memory? There are essentially 

two ways of handling this problem: One can proceed from the assumption 

of either “local” or a “central” control of spreading activation. 

Most network theories (e.g., ACT or even ACT* —a revised version of 

ACT —J. R. Anderson, 1983a, 1983c) assume that spreading activation is 

controlled by two factors: (a) the assumption that the strength of activation 

decreases the more links and nodes have been activated, and (b) the 

assumption that, with the passing of time, activation of each node decays. 

Thus, the search process loses activation as the length of the activated path 

increases. The explanation of very complex search processes, which must 

activate large parts of the network in order to retrieve the sought-after 

information, is unlikely to be based on these mechanisms. 

A more interesting explanation lies in the assumption of control mecha¬ 

nisms that refer to the concepts of preactivation and inhibition. Preactivation 

means that before a search process is initiated, relevant parts of the network 

are already in a state of increased activation. Inhibition stands for the 

opposite effect: Those parts of the network irrelevant to the search are in a 

state of decreased activation. Preactivation and inhibition can explain how 

the search process is controlled and directed. The problem here is how the 

search process provides feedback to a central monitoring device (chap. 11). 

Information can be retrieved as soon as intersecting pathways are found. But 

how is the intersection fed back, and how is the search process terminated? 

Chapter 8 deals with this problem in greater detail. In doing so it becomes 

clear that the issue of control mechanisms (assumption C3 in sections 8.6.2 

and 8.6.3) is one of the more neglected aspects of memory theories. 

5.2 DIFFERENT CLASSES OF MEMORY NETWORKS 

Given the unlimited possibilities that exist in constructing networks, it is 

surprising to see how few of them are used in memory psychology. Those 

that do exist are outlined here. 

5.2.1 Strictly Hierarchical and Linear Structures 

Strictly hierarchical structures can be defined by the relationship existing 

between the number of nodes and links. Thus for example, the structure in 

Fig. 5.2 shows a total of 15 nodes and 14 links. In Fig. 5.3 there are 6 nodes 

and 5 links. Let n be the number of nodes and m be the number of links. For 

a strictly hierarchical structure, then, it always holds that: m = n - 1. 

Linear structures can be regarded as a special instance of strictly 

hierarchical structures. They are created when a single link emanates from 

a node at each hierarchical level (Fig. 5.4c). Thus, the same equation (m = 

n - 1) holds true for linear structures. Strictly hierarchical and linear 

networks are, therefore, defined by a fixed relationship between the number 
of nodes and links (Fig. 5.4). 
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m = n - 1 

FIG. 5.4. A linear structure (c) is a special case of strictly hierarchical structures 
shown in (a) and (b). 

5.2.2 Nonstrictly Hierarchical Structures 

Although they essentially show the same characteristics of a hierarchical 

structure, nonstrictly hierarchical networks do not correspond to the 

equation m = n - 1. Structures that are not strictly hierarchical emerge 

when additional links are inserted either within or between different 

hierarchical levels (Fig. 5.5a, b). 

(a) (b) 

FIG. 5.5. Examples of nonstrictly hierarchical structures. This type of network 
emerges if additional links are inserted between nodes of different hierarchical levels 

(dashed lines) or between nodes of the same level (dotted lines). 
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5.2.3 Interconnected Structures 

Interconnected structures represent a new class of network. They show none 

of those features characteristic of hierarchical structures. The “nesting” 

principle is missing, and the number of links exceeds the number of nodes 

(m > n for n > 3). Figure 5.6 offers an example of an interconnected 

structure (each node is connected to every other node) and two examples of 

partially interconnected structures (m > n is still valid, but each node is not 

connected to every other node). 

(a) 

FIG. 5.6. Examples for partially (a, b) and completely interconnected structures (c). 

5.3 TWO TYPES OF NETWORK MODELS WITH STRICTLY 
AND NONSTRICTLY HIERARCHICAL STRUCTURES 

Network models may be classified according to very different criteria, such 

as whether they focus on semantic or episodic information (Tulving, 1983), 

or on modality specific (Bleasdale, 1983; Paivio, 1971) or nonmodality 

specific information (J. R. Anderson, 1978; Kosslyn, 1981). Here, however, 

we only wish to draw attention to the fact that the vast majority of network 

models assume strictly hierarchical structures. This is also the case for 

well-known and influential models such as J. R. Anderson and Bower’s 

(1973) HAM model, J. R. Anderson’s (1976) ACT model and to a large 

extent J. R. Anderson’s (1983a) ACT* model, the model by the LNR 

research group (Norman & Rumelhart, 1975), and Collins and Quillian’s 

model (1969, 1970). The following chapters show that hierarchical coding 

structures lead to very restrictive memory models incapable of explaining a 

series of important findings. 

Why then do hierarchical network theories enjoy such great popularity? 

One reason for this may lie in the fact that hierarchical structures offer a very 

efficient ordering principle that is found not only in many natural languages 

(e.g., in the form of superordinate and subordinate relationships), but also 

in many scientific classification systems. However, there is another — and for 

our purposes more interesting —reason: Network models are, from the out¬ 

set, either conceived as simulation models or have at least been strongly 
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influenced by them. The format of (traditional) simulation languages is 

hierarchical in nature and thus invites the adoption of hierarchical structures 

in memory psychology. Hierarchical networks originate in “nesting” com¬ 

puter functions, that is, functions contain arguments that in turn are then 

used as functions. When representing a geometric structure, each function 

refers to a certain hierarchical level, whereas its arguments refer to the 

complexity, that is, the number of branches at that level. 

This makes it clear that hierarchical network models proceed from 

representational assumptions most likely derived from computer languages. 

It is, however, questionable whether these assumptions offer suitable 

explanations for human information processing. Nevertheless, the fol¬ 

lowing chapters show that by assuming hierarchical structures some impor¬ 

tant characteristics of search processes can be determined. Figure 5.7 gives 

an overview of strictly and nonstrictly hierarchical memory models. 

strictly 
hierarchical 

Network 
models 

Psycholinguistic models such as 
HAM, ACT, model of the LNR-group 

Models of verb meaning such as Gentner 

Models of word meaning such as Collins 
and Quillian 

Models of fact retrieval such as ACT, 
ACT* 

nonstrictly 
hierarchical 

Modified versions of ACT and ACT* 
such as Anderson (1981) and Anderson 
and Pirolli (1984) 

Spreading activation theory of 
Collins and Loftus (1975) 

FIG. 5.7. Memory theories, classified into strictly and nonstrictly hierarchical 

models. 

Network theories have been well-documented elsewhere (Kintsch, 1980; 

E. E. Smith, 1978; E. E. Smith & Medin, 1981; Wender, Colonius, & 

Schulze, 1980). The following chapters consider those theories that meet the 

following two criteria: On the one hand, they must be directly relevant to 

the distinction made between strictly and nonstrictly hierarchical structures 

and, on the other hand, must enable predictions regarding the speed of 

memory processes. Psycholinguistic theories are, on the basis of these 
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criteria, not immediately relevant to our question, because they cannot be 

fully tested. In addition, there is hardly another area in memory psychology 

in which the idea of strictly hierarchical structures is so strongly accepted 

(cf. Bierwisch, 1977). Models on fact retrieval and semantic memory, 

however, do meet the aforementioned criteria. They refer to strictly as well 

as nonstrictly hierarchical structures and, in addition, their predictions can 

be tested in elaborated experimental paradigms. The next two chapters are 

devoted to the discussion of these theories. 



6 Strictly and Nonstrictly 
Hierarchical Models of 
Fact Retrieval 

How structural and processing assumptions interact, and how the speed of 

search and activation processes is influenced by the different forms of 

memory structures, is the central issue of recent memory research and is 

discussed here and in the following two chapters. This chapter focuses on 

experiments on fact retrieval, whereas the next chapter is concerned with 

experiments on word meaning. Chapter 8 introduces a network model 

designed to overcome the inadequacies of strictly and nonstrictly hierar¬ 

chical models. 

The following discussion is based on the assumption of component codes. 

Here, as well as in chap. 3, we confront the issue as to how the search 

process is influenced by the characteristics of the encoding format. This 

problem, by its very nature, is complex and difficult. Both theoretical 

considerations and the adequacy of the experimental procedures are 

important here. The representational assumptions of the different models 

only make sense within the context of a particular experimental procedure, 

thus it is necessary to discuss these procedures in a more detailed manner. 

Accordingly, we first discuss the experiments and then go over to explain 

the theoretical framework. 

6.1 STRICTLY HIERARCHICAL MODELS OF 
FACT RETRIEVAL 

The following models were developed within the confines of HAM and 

ACT. Their representational assumptions refer to the simplest hierarchical 
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structure imaginable — the fan. A fan is a network in which there are various 

links leading from a single node termed the concept node. Those nodes 

accessed by the links are referred to as fact nodes. 
In fact retrieval experiments subjects are always expected to study a set of 

sentences. Each sentence expresses a fact about a particular concept X or Y. 

Sentences may take the form of “A person (concept X) is in location 

(concept Y).” The sentences are compiled in a way that the concepts X or Y 

are linked to one or several facts expressed by a sentence. Consequently, a 

fan is assumed to represent the facts learned about a concept. Results have 

repeatedly shown that the more facts (sentences) there are to be learned, the 

longer the search process lasts (cf. the review in J. R. Anderson, 1983b). 

This result became known by the term fan effect, or retrieval interference 

(cf. Sternberg, 1969, for similar results). 

6.1.1 The Experimental Paradigm and the Most 
Important Results 

The paradigm of fact retrieval has its origin in sentence verification 

experiments used in evaluating HAM and ACT. Fact retrieval experiments 

can be regarded as a specific variant of sentence verification experiments in 

which the syntax of the sentences remain constant, whereas the number and 

type of facts expressed in the sentence varies. The experimental procedure 

is pictured in Table 6.1, Part A and Part B. It consists of three different 

stages: (a) The acquisition of a series of sentences that express different 

facts about a concept, (b) a test in which subjects have to recall the facts 

about a concept, and (c) a recognition test in which subjects have to 

distinguish similar sentences (distractors) from those learned. 

The most important experimental variable is the number of facts stated 

about a certain concept. For example, consider the concepts “firefighter” 

and “park,” which are used in Table 6.1. Whereas “firefighter” appears only 

once as a concept, “park” occurs three times. There is, therefore, only one 

fact that refers to “firefighter,” but three facts that refer to “park.” In a 

series of experiments (J. R. Anderson, 1974, 1975, 1981; J. R. Anderson & 

L. M. Reder, 1987; King & J. R. Anderson, 1976) it was generally 

discovered that reaction times for yes and no responses in the recognition 

test were dependent on the number of facts. The more facts that were 

learned, the longer were the reaction times (cf. the results in Table 6.1). This 

increase in reaction time, which is a function of the number of facts learned, 

is known as the fan effect. 

6.1.2 Structural Assumptions Underlying the Fan 
Effect 

According to the traditional explanation of this effect, activation decreases 

as the number of links leading from a node increases. Consider the 



TABLE 6.1 
An Example of a Fact Retrieval Experiment 

A. Experimental Design 

Sequence of Tests 

1. Learning 2. Recall Test 3. Recognition Test 

Presentation of a list of sen- Learning performance is Subjects have to distinguish 

tences. Each sentence ex- checked by a recall test: between the learned target 

presses a fact about a For each person subjects sentences and new dis- 

person and a location. must recall the tractor sentences. Distrac- 

corresponding location(s) tors use the same set of 

and for each location the persons and locations but 

corresponding person(s). in different combinations. 

B. The Design of the Recognition Task 

Examples of Target Sentences 

A doctor is in the bank. (l-l)a 

A firefighter is in the park. (l-3)a 

A lawyer is in the church. (2-l)a 

A lawyer is in the park. (2-3)a 

A captain is in the park. d-3)a 

Number of Associated Facts about 
Examples of Correct 

Distractor Sentences Response a Person a Location 

A lawyer is in the bank. “No” 2 1 

A doctor is in the bank. “Yes” 1 1 

A lawyer is in the park. “Yes” 2 3 

A firefighter is in the church. “No” 1 1 

A captain is in the park. “Yes” 1 3 

C. Mean RTs (ms) in the Recognition Task 

Targets Distractors 

Persons Persons 
Number of 

Facts 1 2 3 Mean 1 2 3 Mean 

1 1,111 1,174 1,222 1,169 1,197 1,221 1,264 1,227 

Locations 2 1,167 1,198 1,222 1,196 1,250 1,356 1,291 1,299 

3 1,153 1,233 1,357 1,248 1,262 1,471 1,465 1,399 

Mean 1,144 1,202 1,267 1,204 1,236 1,349 1,340 1,308 

Note:a The first number in parentheses refers to the frequency with which a person appears 

in the list of sentences; the second number refers to the frequency for a location. Data from 

Language, Memory, and Thought (p. 255) by J. R. Anderson, 1976. © 1976 by Lawrence 

Erlbaum Associates. 

53 



54 6. MODELS OF FACT RETRIEVAL 

following example from Fig. 6.1: “A firefighter is in the park.” According 

to ACT, the search process starts at the concept nodes “firefighter” and 

“park.” It is at these nodes that the search process encounters fanlike 

structures. Because there are three sentences in which park is used as a 

concept, three (experimental) links lead from the concept node “park.” 

There is only one sentence concerning “firefighter.” Thus, there is only one 

(experimental) link leading from that concept node. 

The concepts “firefighter” and “park” have different meanings for 

different subjects. As a result, the preexperimental knowledge about these 

concepts varies between the subjects. Because storage efficiency requires 

that any given concept be stored in only one particular location in memory, 

several preexperimental links will have already existed before subjects take 

part in an experiment. Consequently, preexperimental knowledge will 

enlarge the fan and, according to ACT, will lead to a deceleration of 

reaction times just as with the number of facts learned in the experiment. In 

Fig. 6.1 experimental links are represented by continuous lines, whereas 

preexperimental links are represented by dash-dotted lines. The two dotted 

arrows indicate where the search process originates. 

a 
/ \ 

s s ^ P 
✓ \ 

/ \ 
/ \ 

a 
R S \ A 
/ \ 

FIG. 6.1. ACT representation of the sentence “A firefighter is in the park.” The fact 
node of this sentence is connected to another proposition (dashed lines) which states 
explicitly that this sentence is contained in the list of learned sentences. The search 
process spreads from FIREFIGHTER and PARK (dotted line). From Language, 
Memory, and Thought (p. 262) by J. R. Anderson, 1976. © 1976 by Lawrence Erlbauni 
Associates. Adapted with permission. 
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6.1.3 Processing Assumptions Underlying the 
Fan Effect 

According to ACT, a search process originates at the concept nodes for 

“person” and “location” and aims at finding an intersecting pathway. An 

intersection will be found only if a sentence connecting “person” and 

“location” is learned and can still be remembered. In this case the 

intersection is the fact node that represents the learned sentence. Detecting 

an intersection is the necessary criterion for a yes response. If no 

intersection is found, the result will be a negative response. According to 

ACT, the learned sentences are also connected to propositions that state 

explicitly whether or not a particular sentence is contained in the study list. 

This latter assumption, however, has no bearing on the explanation of the 

fan effect. 

As complicated as ACT might appear, there is only one crucial factor in 

explaining the fan effect: the interaction between the number of links and 

the amount of activation. The more links there are leading from a concept 

node, the longer reaction time will be for yes as well as for no responses. 

Figure 6.2 contains a schematic depiction of that section of Fig. 6.1 relevant 

to explaining the fan effect. 

Activation a(i) spreading along link i depends on the strength s(i) of link 

i and the sum S of the combined strength of all the links leading from the 

concept node (S = £s(/); i = 1, . . . n + k; all n + k links leading from 

Experimental facts Preexperimental facts 
1.n n + 1.n+k 

Search process 

FIG. 6.2. A simple strictly hierarchical structure called a “fan,” underlies the 
explanation of the fan effect. Summing the strengths s(i) of all links i gives S, which can 

be considered the total strength of the search process. 
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the concept node; cf. Fig. 6.2). Thus, according to ACT (cf. J. R. 
Anderson, 1976, p. 263), activation is defined as: 

a(i) = s(i)/S. (6.1) 

The time t(i) needed to activate the link is the reciprocal value of a(i): 

t(i) = S/s (/). (6.2) 

Equation 6.1 reveals an important fact: The sum of all outputs a(i) leading 
from a node is equal to the input received by that particular node. In other 
words, the links emanating from a node literally divide the activation 
received by the concept node. 

Given the case that all links are of equal strength [5(0 = 1], activation a(i) 
depends only on the number of links. 

a(i) = 1 /(n + k). (6.3) 

Consider, for example, a fan with two links of equal strength, and assume 
that input activity is / = 1. Then, activation a(i) = Thus, the sum of all 
outputs [O = + x- = 1) equals input activity, and hence 1=0. 

This explanation of the fan effect enables a clear prediction: The more 
facts that are learned, (a) the less activation a(i) will spread to the fact node, 
and (b) the more time t(i) will be needed to access the fact node. Provided 
that all links are equal in strength, activation time t(i) is: 

/(/') = n + k. (6.4) 

The reaction time for retrieving a sentence will increase, the greater the 
number of facts learned. As it is assumed that the search process emanates 
from the concept nodes, regardless of whether or not the nodes intersect, 
ACT predicts comparable effects for yes and no responses. 

Less convincing is the assumption that the number of preexperimental 
facts k will slow down the search process to the same extent as the number 
of facts learned during the experiment. A more obvious assumption would 
be that the subjects are capable of focusing on that search area containing 
the facts learned in the experiment. If preexperimental knowledge, which 
varies to a considerable degree among subjects, does in fact have as great an 
influence as Anderson (1983a, 1983b, 1983c) assumed, then it is surprising 
that the fan effect can be replicated so easily. 

6.2 A MODEL OF STRICTLY HIERARCHICAL 
SUBSTRUCTURES: FOCUSING ON THE RELEVANT 

SEARCH AREAS 

The explanation of the fan effect offered so far leads to a paradox. Because 
it is assumed that all of the links must be searched, regardless of number, 
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we arrive at the paradoxical conclusion that the more knowledge is stored in 
memory, the slower it works. 

E. E. Smith, Adams, and Schorr (1978) pointed out this paradox and 
emphasized that the interpretation of the fan effect in many cases contra¬ 
dicts our everyday experiences. Compare the knowledge of an expert who 
knows many facts about a certain subject with that of a novice who only 
knows a few facts. Then, according to ACT, it should be assumed that it 
would take the expert much longer to retrieve a fact than it would the 
novice. Our everyday experiences show, however, that in fact the opposite 
is the case. It is more plausible to assume that the expert’s knowledge is 
better structured and the expert is, therefore, faster than a novice at 
retrieving relevant facts. 

But what does an “efficient structuring” of the facts stored in memory 
mean? McCloskey and Bigler (1980) conducted a number of very con¬ 
vincing experiments on this issue. They were able to show that subjects 
group together those facts containing a similar content, and the speed with 
which a fact is retrieved is by no means only dependent on the total number 
of facts learned for one concept —as would be expected according to ACT. 

6.2.1 The Experimental Paradigm 

McCloskey and Biegler (1980) used sentences like “The (person) likes 
(object).” The most important experimental variables were the number of 
objects and their affiliation to semantic categories. The objects belonged 
either to the category “animals” (Category A) or to the category “countries” 
(Category B). Some persons learned only one fact from Category A 
(sentences of Type 1A-0B); others learned five facts from Category B and 
only one fact from Category A, and so forth. The structure of this 
experiment and the most important results are represented in Table 6.2. 

TABLE 6.2 
Experimental Design and Results of Experiment 1 

A. Types of Target and Distractor Sentences 

Target Type 1A-0B3 The architect likes elephants 
Distractor Type l-0b The architect likes wolves 

Target Type 1A-5B lions 
Portugal 

The editor likes Italy 
Canada 
England 
Brazil 

Distractor Type 1-5 The editor likes bears 

Distractor Type 5-1 The editor likes Mexico 

(continued) 
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TABLE 6.2 (continued) 

Target Type 6A-0B wolves 
rabbits 

The lawyer likes bears 

tigers 

Pigs 
dogs 

Distractor Type 6-0 The lawyer likes elephants 

B. Results, Mean RTs (ms) in the Recognition Task 

Sentence Type Targets Distractors 

1-0 1,202 1,382 

1-5 1,312 1,620 

5-1 1,570 1,801 

6-0 1,617 1,876 

Note: aA denotes category “animal,” B denotes category “country.” 

bFirst number stands for the number of relevant facts, second 

number for irrelevant facts. From McCloskey and Bigler, 1980, 

Memory and Cognition, 8, pp. 253,254. © 1980 by Psychonomic 

Society Inc. Reprinted with permission. 

6.2.2 Structural and Processing Assumptions 

If one were to assume that subjects divide the facts for animals and 

countries into different hierarchical substructures, the result would be a 

hypothetical memory network of the kind represented in Fig. 6.3, which 

refers to sentences of Type 1A-5B. The assumption regarding subnodes for 

objects of Categories A and B enables the prediction that only the facts of 

the relevant category are searched. For distractor sentences of Type 1-5 (one 

relevant and five irrelevant facts) one can expect shorter reaction times than 

for distractor sentences of Type 5-1, where five relevant facts must be 

considered. The results shown in Table 6.2, Part B support this prediction. 

A comparison of the results of sentences of Type 1-0 and of Type 1-5 

shows that not only the relevant but also the irrelevant facts play a role. 

Although only one relevant fact is present under both experimental 

conditions, the reaction times for sentences of Type 1-5 are, nevertheless, 

longer than those for sentences of Type 1-0. This result also agrees with the 

assumption of subnodes. The representation of relevant and irrelevant facts 

requires a fan, which is missing in Type 1-0. Accordingly, the fact retrieval 

of these sentences takes place faster than in those sentences in which 

relevant and irrelevant facts must be distinguished. 

It is more complicated to explain why sentences with five relevant facts 

and one irrelevant fact (Type 5-1 sentences) are evaluated more quickly than 

sentences with six relevant and zero irrelevant facts (Type 6-0 sentences). If 

one starts out from the assumption on the equal strength of all links, then 
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Category A >• Lion 

Portugal 
Search process-► Name 

Italy 

Canada 

Norway 

Austria 

FIG. 6.3. Sentences of the type 1A-5B in Table 6.2 can be represented by hierarchical 
substructures. 

the opposite result is to be expected. In the network in Fig. 6.3, each 

subnode representing sentences of Type 5-1 is activated by an amount equal 

to This amount is divided among the five fact nodes. They receive 

activation in the amount of (^) (j) =0.1. For sentences of Type 6-0, a fan 

with six links is to be assumed. Here the activation of each node is equal to 

g or 0.17. Because sentences of Type 6-0 receive greater activation, one 

could expect shorter reaction times than with sentences of Type 5-1. This, 

however, is not the case. 

Assume that the strength of the link leading to the relevant subnode is 

greater than the strength of the link leading to the irrelevant subnode. Now, 

it is possible to explain the difference in reaction times between sentences of 

Type 6-0 and 5-1. This assumption means that the subject can evaluate and 

directly influence the path the search process should take. If, for example, 

the strength of the relevant link is 0.9 and the strength of the irrelevant link 

is only 0.1, then according to Equation 6.1 there is an activation of 0.9/(0.9 

+ 0.1) = 0.9 for the relevant subnode. Accordingly, each relevant fact 

node receives activation in the amount of 0.9/5 = 0.18. This amount is 

slightly larger than the activation of a node in a fan with six links. The 

assumption regarding different strengths in links enables us to explain why 

the search process in sentences of Type 6-0 lasts a little longer than in 

sentences of Type 5-1. 

A reliable verification of the model of hierarchical substructures requires 

a quantitative prediction of reaction time differences between various 

sentence types. In making a quantitative prediction, however, one is faced 

with two problems: On the one hand, it is unlikely that there is a method by 

which one could estimate the strength of a link, and, on the other hand, it 

is not only conceivable but also plausible that the strength of a link does not 

remain constant, but rather varies according to the experimental conditions 

and the kind of search process. 
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6.3 NONSTRICTLY HIERARCHICAL MODELS OF 
FACT RETRIEVAL 

The assumption underlying strictly hierarchical memory structures has led 

to a fundamental problem: The speed of activation and search processes 

decreases as the complexity of memory structure increases. E. E. Smith, 

Adams, & Schorr (1978), McCloskey and Bigler (1980), and J. R. Anderson 

(1981) stressed the problem commonly described as the “paradox of 

retrieval interference.” Even the attempted solution discussed in the pre¬ 

vious chapter —the introduction of subnodes (J. R. Anderson, 1983a, 

1983c) —is not capable of giving a generally satisfactory explanation of the 

problem of activation deceleration. Although strictly hierarchical structures 

with subnodes enable faster search processes compared to structures 

without subnodes, an increase in the number of subnodes leads inevitably to 

a deceleration of activation and search processes. In realistic situations a 

huge number of subnodes is required in order to structure knowledge 

efficiently. As a result, the paradox of retrieval interference is only passed on 

from the level of concept nodes to that of subnodes. 

The traditional explanation of the fan effect, according to J. R. 

Anderson (1974, 1976), is put into question not only because of theoretical 

considerations, but also through a series of experimental findings. It has 

been shown that under the following conditions no fan effect could be 

traced: 

• In the case of overlearned facts, Hayes-Roth (1977) was able to show 

that the fan effect disappears as the learning phase is lengthened: 

After a total of 11 experimental sessions, no fan effect could be 

discerned. 

• In the case of consistency judgments, where subjects must examine 

the relationship between concepts, a negative fan effect was discov¬ 

ered. This means that reaction time decreases as the number of facts 

increases (J. R. Anderson & L. M. Reder, 1987; L. M. Reder & 

Ross, 1983; L. R. Reder & Wible, 1984). However, if subjects are set 

to the task of recognizing sentences, then reaction time increases 

with the number of facts learned (positive fan effect). 

• In the case of integrated facts, that is, facts that are connected 

thematically and refer to each other, E. E. Smith et al. (1978), 

Moeser (1977, 1979), L. M. Reder and J. R. Anderson (1980), J. R. 

Anderson (1981), and Myers, O’Brien, Balota, and Toyofuku (1984) 

revealed that the fan effect occurs only when the facts learned are 

encoded as unintegrated episodes. If the subjects manage to connect 

the individual facts to an episode, then a fan effect can no longer be 
observed. 
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What are the consequences of these results? The negative findings of 

Hayes-Roth (1977) can easily be explained without rejecting a strictly 

hierarchical memory structure. It is theoretically sound to assume that the 

repeated learning of facts leads to an increased strength of experimental 

links, at the expense of preexperimental links. As a result, the fan effect 

diminishes to an extent that it can no longer be measured (Equation 6.1 and 

Fig. 6.2). J. R. Anderson (1983c, p. 266) made explicit reference to this 

possibility. 

A similar interpretation holds true for the negative fan effect discovered 

in consistency tasks. Here, for example, the subjects had to judge whether 

or not a concept and a corresponding verb were connected in a grammat¬ 

ically correct manner: The more facts that were learned in relation to a 

concept, the more often this concept was represented in the learning phase 

(see the experimental design on fact retrieval in Table 6.1, Part A). With an 

increased frequency of exposure, concept nodes may be accessed more 

easily (J. R. Anderson, 1983c, p. 266). Thus, in consistency judgments, 

those concepts about which many facts were learned are retrieved faster 

than those on which only few facts were learned (J. R. Anderson & L. M. 

Reder, 1987). 

Why does this not generally lead to a negative fan effect? The answer is 

surprisingly simple. The search strategy determines whether or not a 

positive fan effect appears. A positive fan effect can only be observed if the 

fan is actually activated. With regard to this, it is important to recall that 

the links of a fan always lead away from concept nodes to different facts 

(Fig. 6.1). In consistency tasks, however, only concepts —not facts —are 

retrieved, and as a result there is no reason for a positive fan effect to 

emerge. If, however, subjects are set the task of recognizing sentences, then 

reaction times increase with the number of facts learned in relation to a 

concept. Now the different links leading from a concept node to fact nodes 

must be activated, which therefore leads to the activation of the fan, which 

in turn leads to an increase in reaction time, and thus to the creation of a 

positive fan effect. The negative and positive fan effects can, therefore, be 

explained by the fact that there are different search strategies in one and the 

same memory network —as always, this has a strictly hierarchical structure 

(L. M. Reder, 1987). 
In contrast, the results from integrated facts force us to abandon strictly 

hierarchical memory structures. In the experiments reported in section 6.1, 

all the facts were thematically independent of each other. There is no 

thematic connection between the statement “The firefighter is in the park,” 

and the statement “The captain is in the park” (Table 6.1, Part B), apart 

from the common concept “park.” Consequently, it must be assumed that 

the individual facts are not connected to each other in memory. They are 

only connected indirectly by a common concept node (“park”), but between 
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them, there is no direct connection (see section 5.2.1). However, in the case 

of integrated facts, a strictly hierarchical structure is no longer plausible as 

their relatedness must be reflected by additional links in the memory 

network. The following experiment by E. E. Smith, Adams, and Schorr, 

(1978, p. 442) can be used to demonstrate this idea. Consider the following 

statements about Marty: “Marty broke the bottle” and “Marty did not delay 

the voyage.” Without additional information, no thematic connection may 

be detected. Thus, a strictly hierarchical structure seems appropriate for the 

representation of these unrelated facts (Fig. 6.4a). The situation changes, 

however, when a third sentence is introduced: “Marty had been chosen to 

christen the ship.” Now it becomes clear that the first two facts are also 

connected: Marty did not delay the voyage (the maiden voyage of the ship), 

because he broke the bottle of champagne on the bow of the ship, as is the 

custom. The networks in Fig. 6.4 show a strictly hierarchical structure, as 

can be assumed for the representation of unrelated facts (Fig. 6.4a), and a 

nonstrictly hierarchical structure for the representation of thematically 

connected or integrated facts (Fig 6.4b). 

As insignificant as it may at first appear, the assumption of nonstrictly 

hierarchical codes forms the starting point for a completely new group of 

network models. Together with nonstrictly hierarchical codes, a new 

processing assumption becomes effective that would be meaningless in the 

case of strictly hierarchical structures. As there are no cycles or redundant 

pathways in strictly hierarchical structures, indirect activation can never be 

Sentence 3 
Christening" 

FIG. 6.4. The representation of unintegrated facts (a) requires a hierarchical structure 
whereas integrated facts (b) require an interconnected structure. Note that it is Sentence 
3 that turns the unintegrated facts into a meaningful episode. Sentence 1: Marty broke 
the bottle. Sentence 2: Marty did not delay the voyage. Sentence 3: Marty did the 
christening of the ship. From E. E. Smith, Adams, and Schorr, 1978, Cognitive 
Psychology, 10, p. 442. © 1978 by Academic Press. Adapted by pemission. 
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effective. In nonstrictly hierarchical or in interconnected structures, addi¬ 

tional links and redundant pathways do exist, allowing spreading activation 

to follow two different routes: a direct route proceeding from one node to 

another, and an indirect route that either passes through a cycle or one or 

more additional pathways. The concept of indirect activation, discussed in 

detail in Chap. 8, enables us to explain a positive as well as a negative fan 

effect. Most importantly, however, it allows us to predict that the speed of 

activation and search processes does not necessarily decrease as the 

complexity of the network increases, but may instead increase. This 

principle, more than any other discussed so far, allows us to explain the 

high efficiency of our memory performance. 

The role that indirect activation plays, and how implicitly and unsyste¬ 

matically this assumption has been adopted by the predominantly strictly 

hierarchical memory models (J. R. Anderson, 1981, 1983a, 1983c), is shown 
in the next sections. 

6.3.1 The Experimental Paradigm: The Effect of 
Integrated Facts on the Acquisition and Retrieval 
of New Information 

J. R. Anderson (1981) examined the question of how thematically con¬ 

nected facts are integrated with new information. The experimental design 

of this work corresponds in its basic features to fact retrieval experiments 

discussed in section 5.4.1. Thus, here too, J. R. Anderson used sentences of 

the type “The (person) is in (location).” This experiment is novel because 

subjects receive prior knowledge on the persons mentioned in the sentences, 

before these are actually acquired (see the experimental design depicted in 

Table 6.3, Part A). 

The amount of prior knowledge was varied at five stages during three 

different experiments: Under the experimental conditions with the greatest 

amount of prior knowledge (Condition 1), subjects were given the names of 

famous personalities (e.g., Benjamin Franklin, Richard Burton, etc.); 

under the condition with the second largest amount of prior knowledge 

(Condition 2), subjects received detailed descriptions of different names of 

fictional characters; under the third experimental condition, a sentence was 

used to express a fact about each fictional character (Condition 3); under a 

further experimental condition, the subjects were only given the names of 

the persons (Condition 4); no prior knowledge was given to the subjects 

under the controlling condition (Condition 5). 

The dependent variables are the number of errors that occur before 

reaching the learning criterion in the free recall task, as well as the reaction 

times in the recognition task. The experimental design and the most 

important results are given in Table 6.3. 
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TABLE 6.3 
Experimental Design and Results of Experiment 2 (Conditions 2-5) and Exper¬ 

iment 3 (Condition 1) 

A. Experimental Design 

Sequence of Tests 

1. Learning of 2. Learning of 3. Recall test 4. Recognition 

prior knowledge sentences of the 

about each of a type “The (person) 

list of persons is in (location)” 

The Amount of Prior Knowledge Is Varied in 5 Experimental Conditions 

Condition 1: 

Condition 2: 

Condition 3: 

Condition 4: 

Condition 5: 

Subjects are presented with the names of well-known personalities, such as 

Robert Kennedy and Benjamin Franklin. 

Subjects are presented with a list of unfamiliar names, but a detailed de¬ 

scription of each person is given (e.g., “Carol Norman is a lawyer but 

owns an antiques shop. Running the antiques shop is her hobby. She 

owns a beautiful collection of old clocks.”). 

Subjects are presented with a list of unfamiliar names. Only a brief descrip¬ 

tion of each person is given (e.g., “Henry Caputo buys a ticket for the 

football game in New Haven.”). 

Subjects receive only the list of unfamiliar names without any further de¬ 

scription. 

No prior knowledge is given. 

B. Results 

Experimental Condition 

1 2 3 4 5 

Errors, recall test 

1 location .31 .67 .80 1.51 2.55 

2 locations .88 1.71 1.59 1.79 2.54 

Means .59 1.19 1.20 1.65 2.55 

RTs, recognition test 

1 location 706 1168 1156 1080 1097 

2 locations 939 1326 1324 Ml 1342 
Fan effect 233 158 168 197 245 

Note: Data from J. R. Anderson, 1981, Memory and Cognition, 9, pp. 241, 242, 245. © 1981 

by Psychonomic Society Inc. Reprinted with permission. 

6.3.2 Structural and Processing Assumptions 

The crucial representational assumptions in the experiment just described 
refer to the question of how prior knowledge is structured in memory and 
how it is connected to the sentences acquired later. Anderson attempted to 
explain this by using experimental Condition 2 (i.e., a high amount of prior 
knowledge: detailed description of fictitious characters) and experimental 
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Condition 4 (i.e., a small amount of prior knowledge: only the names of the 

persons are given; Table 6.3, Part A). 

The prediction for Condition 4 is simple. The appearance of the 

well-known fan effect is to be expected: The concept node representing the 

person is connected with either one or two location nodes depending on how 

many locations have been learned. 

In experimental Condition 2, on the other hand, a prediction on the 

memory structure is more complicated. Not only the representation of prior 

knowledge (acquired in Learning Phase 1) but also the integration of prior 

knowledge with the facts (learned in Phase 2) needs to be considered (Table 

6.3, Part A). The statements contained in prior knowledge (e.g., “hobby,” 

“old clocks,” “antique shop”) refer to each other and form a coherent 

episode, which is used to describe the fictitious character (cf. the example in 

Table 6.3, Part A). A network of integrated facts is created by these state¬ 

ments. It can, therefore, be assumed that fact nodes are not only connected 

with the concept node (the person), but also with each other. In Learning 

Phase 2 the concept node is also connected with one or two location nodes, 

depending on how many locations have been presented. The more elaborate 

the prior knowledge, the easier it will be for the subject to integrate the newly 

acquired facts (locations) into the already existing knowledge. Assume, for 

example, that in Learning Phase 2 subjects are presented with the statement 

“Carol Norman is in the bank.” It is likely that subjects will attempt to 

integrate this sentence into the previously learned episode about Carol Nor¬ 

man, that is, to infer that Carol Norman is in the bank to get money in order 

to purchase an expensive antique clock. This process of integration leads to 

the formation of additional pathways between the location node and one or 

more nodes representing prior knowledge (Fig. 6.5). 

Now three different predictions can be distinguished: The first prediction 

relates to the number of errors in the acquisition of locations, the second 

prediction gives details on the length of reaction times in the recognition 

task, and the third prediction is concerned with the strength of the fan 

effect. 

Prediction 1. Anderson started out from the plausible assumption that 

integrated facts facilitate the acquisition of sentences in Learning Phase 2. 

The more prior knowledge that is available, the better the new knowledge 

can be linked with old knowledge, and the more resistant the resulting 

memory structure is against the loss of information. Even in the case of 

some nodes or links having been forgotten or not originally encoded, 

missing information can still be reconstructed on the basis of the existing 

and thematically connected facts. It is, therefore, to be expected that the 

number of errors made in reaching the learning criterion decreases with an 

increase in the amount of prior knowledge. The results presented in Table 
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Search process.► NAME < 

Location 1 
— Bank 

" Location 2 
Park 

(a) Unlntegrated facts 

Location 1 
Bank 

• Location 2 
Park 

(b) Integrated facts 

FIG. 6.5. Representation of sentences referring to (a) experimental Condition 4 and 
(b) experimental Condition 2 in Table 6.3. 

6.3, Part B are, without doubt, a confirmation of this prediction. Four 

times as many errors were made under the experimental condition without 

prior knowledge (Condition 5) as compared to the condition with the 

highest amount of prior knowledge (Condition 1). 

Prediction 2. The second prediction relates to the question of what 

influence prior knowledge has on the speed of the search process. Because 

it emanates from the concept nodes (here the person nodes), one must 

assume on the basis of the ACT model that its speed decreases to the extent 

that the number of links leading from concept nodes increases. The more 

links that lead from a concept node, the more prior knowledge is connected 

with it. As a result, with an increase in the amount of prior knowledge, 

there is also an increase in reaction time. Contrary to the expectations of 

ACT, by far the shortest reaction times were found under those experi¬ 

mental conditions with the highest amount of prior knowledge. J. R. 

Anderson (1981) was able to show that this effect is not due to the faster 

coding of the known (in contrast to the fictitious) names. Thus, this result 

can be regarded as a challenge to ACT. Even the more recent version, ACT* 

(J. R. Anderson, 1983a, c; J. R. Anderson & Pirolli, 1984), does not 
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provide a satisfactory explanation of this result (section 6.3.2). Only the 
connectivity model (introduced in chap. 8) provides a basis to explain this 
and similar findings. 

Prediction 3. The third —and for our purposes most interesting — 
prediction focuses on the fan effect. Here, in contrast to the second 
prediction, the assumption of indirect activation becomes relevant. The 
search process starts out at the concept node and spreads in two directions: 
in that part of the network representing prior knowledge and in that part 
representing the acquired locations. As these are also connected to the 
integrated facts of prior knowledge (Fig. 6.5b), they are not only activated 
primarily by concept nodes (direct activation), but also indirectly through 
prior knowledge (indirect activation). 

In order to describe the quantitative relation between direct and indirect 
activation, we use Anderson’s (1981) notation: Let n be the number of 
acquired locations, and let s be the strength of each link connecting the 
concept node (person node) with a location node. The combined strength of 
all the links of prior knowledge is indicated by K. Thus, the strength of all 
pathways leading from the concept node is equal to K + ns. According to 
ACT, the total strength of activation S [S = K + ns] is divided among all 
the links leading from the concept node. Thus the amount of direct 
activation for a location node is equal to s/(K + ns). 

However, location nodes are not only activated directly, but also 
indirectly by an amount equal to fK (fraction of K). In other words, because 
the exact geometry of prior knowledge is not known, only rough estimates 
can be given for fK. Consequently, indirect activation is defined as fK/(K 

+ ns). 
Adding direct and indirect activation results in (fK + s)/(K + ns). The 

time t spreading activation needs to arrive at the location nodes is, therefore 
(cf. Equation 6.2): 

t = (K + ns)/(fK + s). (6.5) 

In order to estimate reaction time (RT), a linear function is assumed, with 
a and b as regression constants: 

RT = a + b [(K + ns)/(fK + s)]. (6.6) 

By converting Equation 6.6, we arrive at the following result: 

RT = a + bK/(JK + s) + bns/(fK + s). (6.7) 

The third term [bns/(fK + 5)] of Equation 6.7 refers to the fan effect. As 
n is contained in the numerator, it follows that RT increases with an 
increasing number of acquired locations. At the same time, it must also be 
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taken into consideration that K is contained in the denominator and that the 
fan effect, therefore, decreases as the amount of prior knowledge increases. 

As the reaction times in Table 6.3, Part B indicate, the previous 
predictions apply to experimental Conditions 2-5 only. The more prior 
knowledge that is acquired, the more effective indirect activation becomes, 
and the smaller the fan effect. However, the results of experimental 
Condition 1 with the largest amount of prior knowledge contradict the 
predictions of ACT. Here, the fan effect is almost as large as the one in 
experimental Condition 5, in which no prior knowledge was represented. 

6.4 THE SPEED OF SPREADING ACTIVATION IN ACT 
AND ACT* 

It is one of those rare and exciting events when an established theory —like 
J.R. Anderson’s ACT model, for example —must be modified as a result of 
a single but decisive experiment. Credit is due to Ratcliff and McKoon 
(1981) for drawing attention to the problematic nature of one of the central 
assumptions of the ACT model, namely that the time needed to activate a 
network link is 50 ms to 100 ms (J. R. Anderson, 1976). Ratcliff and 
McKoon demonstrated, with the help of a priming experiment, that the time 
for the spread of activation is so small as to be insignificant and probably 
accounts for only a few ms per network link. 

Because of the great importance of this finding, the experimental 
procedure deserves a closer look. Before the priming experiment, subjects 
had to learn linearly structured sentences in which a concept of the first 
sentence is connected with a concept in the second sentence. This was then 
connected with one in the third sentence, and so on. The sentences, 
connected in such a way, resulted in a sequential-linear chain of events, as 
the following example shows (Ratcliff & McKoon, 1981, p. 455): “The 
researcher gave the sheriff a dig in the ribs” (N1 V N2). “The sheriff stared 
at the space ship” (N2 V N3). “The space ship carried a stranger” (N3 V N4). 
“The stranger pulled out a weapon” (N4 V N5). “The weapon vaporized a 
mountain” (N5 V N6). The symbols N1 . . . N6 stand for “Noun 1” . . . 
“Noun 6, ” V stands for “verb.” These sentences can be represented as a 
chain of hierarchical structures, as depicted in Fig. 6.6. 

After these sentence chains had been acquired, the priming experiment 
was carried out. Before the target word, another word was presented as the 
prime, which was either at a great distance from the target (e.g., N1 as 
prime and N6 as target) or more closely situated (e.g., N5 as prime and N6 
as target). 

The subject’s task was to judge whether or not the target appeared in the 
list. The most important independent variables were the stimulus- 
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Prime 1 Prime 2 Target 

FIG. 6.6. Sentences which are linked by single nouns (Nl, N2, . . . N6) create a 
strictly hierarchical structure. N = noun; V = verb; P = predicate; R = relation; A 
= argument. From Ratcliff and MCKoon, 1981, Psychological Review, 88, p. 456. © 
1981 by American Psychological Association. Reprinted by permission. 

onset-asynchrony (the interval between the onset of prime and target) and 

the distance between the prime and target in the list of sentences. The most 

important dependent variable was reaction time. The results of these 

experiments show that priming effects (i.e., a decrease in reaction time 

caused by the prime) for prime-target pairs that were far away, as well as 

those that were not so far away, appeared simultaneously and after a 

stimulus-onset-asynchrony of only 100 ms. In assuming a rather slow 

activation of network links, the closest prime should become effective much 

sooner than the one that is further away. This, however, is not the case, as 

the results clearly show. 

In the ACT* model, J. R. Anderson started out from the assumption of 

a very fast and almost simultaneous spread of activation (J. R. Anderson, 

1983a, p. 28, 1983c, p. 265; J. R. Anderson & Pirolli, 1984, p. 792), which 

can be described by simultaneous linear equation systems (cf. detailed 

discussion of an example in section 8.4.2). As a consequence of this 

assumption, reverberating activity becomes effective: Each activated node 

sends activity back to that node by which it was first activated (e.g., J. R. 

Anderson, 1983c, p. 266). In addition, reverberating activation helps to 

strengthen intersections. This leads to a weakening of the fan effect. 

Looking back over chap. 6 notice that nonstrictly hierarchical structures 

(Anderson, 1981) were introduced in order to explain the effects of 

integrated knowledge. This also holds true for the more recent version of 

ACT*. But despite the differences between ACT and ACT* (cf. the review 
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in J. R. Anderson, 1983a, p. 22), the arguments discussed up to now remain 

as valid as ever, mainly because the explanation of the fan effect (according 

to Equations 6.1 and 6.2) is just as valid for ACT as it is for ACT*. Chapter 

8 points out that, in order to overcome the paradox of retrieval interference, 

the assumption of hierarchical structures and those underlying Equations 

6.1 and 6.2 must be rejected. 



7 Strictly and Nonstrictly 
Hierarchical Models of 
Word Meaning 

Models of word meaning and fact retrieval are generally concerned with 

different types of information. But with regard to representational assump¬ 

tions, there are notable similarities. The following sections show that 

whereas the early models of word meaning were strictly hierarchical, such 

assumptions were abandoned in more recent models. Let us first, by way of 

comparison, point to the differences between models of word meaning and 

fact retrieval and then discuss the central issues governing word meaning. 

7.1 A COMPARISON OF WORD MEANING AND 
FACT RETRIEVAL 

Models of fact retrieval refer exclusively to those encoding structures that 

interconnect different concepts and are thus termed large-scale models of 
memory (E. E. Smith, 1978). In contrast, models of word meaning focus on 

the coding format of concepts. Consequently, they are called microscale 
models of memory. Most models assume that the format of a concept (i.e., 

the meaning of a word) can be explained by a structure of semantic features. 

But once this assumption is accepted, the question arises as to how different 

concepts are connected to each other. Thus, models of word meaning are 

also concerned with particular relations existing between concepts, such as 

super- and subordinate relations. Those relations connecting different 

features within a concept as well as those nonepisodic relations connecting 

different concepts were summed up under the term innerconceptual rela¬ 
tions (Klix, 1977a, 1977b; Klix, Kukla, & Klein, 1976). They represent that 
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type of knowledge that, even according to the strictest definition, can be 
regarded as semantic information. Interconceptual relations, on the other 
hand, refer to a very heterogeneous class of knowledge comprising episodic 
as well as linguistic and syntactic information. According to Klix’s defini¬ 
tion, the different types of information the two models refer to can easily be 
categorized into two groups: Models of word meaning refer primarily to 
innerconceptual information, whereas models of fact retrieval refer exclu¬ 
sively to interconceptual information. 

To some extent this definition is similar to the distinction Tulving made 
between episodic and semantic information (Tulving, 1972, 1983). How¬ 
ever, innerconceptual relations comprise only a small subset of that 
information that Tulving terms “semantic.” Interconceptual relations, on 
the other hand, comprise not only episodic but also certain linguistic 
relations and thus semantic information as well. Based on interconceptual 
relations, models of fact retrieval may thus not be regarded as pure 
semantic memory models. Fact retrieval experiments always consist of a 
recognition task. Because this task examines knowledge acquired within a 
particular experimental context, subjects must retrieve contextual (i.e., 
episodic) information in order to arrive at a correct answer, that is, they 
have to judge whether a sentence presented during the recognition task is 
“old” (i.e., was presented during the preceding learning session) or “new” 
(i.e., was not presented during this learning session). Without knowing this 
contextual information (so characteristic of episodic information) it would 
be impossible to perform the recognition task. 

In contrast to models of fact retrieval and regardless of the various 
definitions of semantic information, all of the different models of word 
meaning (cf. Fig. 5.1) may be regarded as pure semantic memory models. 
They are all confronted with the question as to how the meaning of concepts 
is represented in memory. Concepts form the basis of our permanent 
knowledge, which is stored exclusively in LTM. 

Experimental paradigms for investigating fact retrieval and word 
meaning also differ fundamentally in the type of memory tasks they 
employ. Subjects participating in fact retrieval experiments must first learn 
those items on which they are to be tested later. In a typical experiment 
subjects are required to reach a 100% learning criterion before their 
recognition performance is tested. Thus, fact retrieval may not be consid¬ 
ered a STM task. Furthermore, in comparison to semantic memory tasks, 
fact retrieval cannot be considered a pure LTM task. In contrast to semantic 
knowledge, which is at our disposal our entire lives, the information 
subjects have learned in a fact retrieval experiment will be forgotten after 
some time. Memory tasks that can be classified neither as pure STM nor as 
pure LTM tasks, are usually termed nonpermanent memory tasks. Subjects 
participating in semantic memory tasks are not required to learn the 
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material on which they are being tested. Their task, for example, is to judge 

whether or not a certain concept (e.g., “eagle”) belongs to a superordinate 

concept (e.g., bird, animal, being). What is being tested here is the ability 

to access information that is at the disposal of every adult. Semantic 

memory tasks, therefore, represent the purest conceivable form of LTM 
task. 

7.2 CENTRAL TOPICS IN THE EXAMINATION OF 
WORD MEANING 

There are only a few areas in memory psychology as well documented as 

models of word meaning (Hoffmann, 1986; Hollan, 1975; M. K. Johnson 

& Hasher, 1987; Johnson-Laird, 1987; Johnson-Laird, Herrmann, & 

Chaffin, 1984; Kintsch, 1980; McNamara & Sternberg, 1983; Medin & E. E. 

Smith, 1984; E. E. Smith, 1978; E. E. Smith & Medin, 1981). We can thus 

forego a description of these models and instead concentrate on some of the 

crucial issues concerning semantic memory research. 

Almost all recent models of word meaning proceed from the basic 

assumption that the meaning of concepts can be derived from a structure of 

semantic components (Gentner, 1975). One of the reasons why this 

assumption, commonly known as the “decomposition of meaning” (or the 

“atomization of meaning”; Bolinger, 1965), has become so widely accepted 

may be due to the well-known work of Katz and Fodor (1963). Their theory 

is based on the notion that words are stored as “lexical items” in a kind of 

“dictionary,” and their meaning can be described in terms of “semantic 

markers” and “distinguishers”: “The semantic markers and distinguishers 

are the means by which we can decompose the sense of the lexical item into 

its atomic concepts, and thus exhibit the semantic structure in a dictionary 

entry and the semantic relations between dictionary entries” (p. 185). 

The assumption of decomposition and the distinction between certain 

types of components are of crucial importance to any semantic memory 

theory. It comes as no surprise, therefore, that there are as many definitions 

of the term semantic components as there are names to describe it. Collins 

and Quillian (1969) spoke of “properties,” E. E. Smith (E. E. Smith & 

Medin, 1981; E. E. Smith, Shoben, & Rips, 1974) and Kintsch (1974) of 

“semantic features,” and Rosch (Mervis & Rosch, 1981) used the more 

general term “attributes.” Glass and Holyoak (1975), on the other hand, 

borrowed the term semantic marker from Katz and Fodor. All of these 

terms apply to nouns only. The semantic components of verbs have been 

termed semantic primitives. 
Different emphases are placed on the various types of semantic compo¬ 

nents. E. E. Smith et al. (1974) introduced the well-known distinction 
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between defining and characteristic features (cf. McNamara & Sternberg, 

1983). Klimesch (1981) distinguished between object (concrete) features, 

conceptual (abstract) features, and episodic features. Engelkamp (1987, 

1991) stressed the importance of motor components and Hoffmann (1986; 

Hoffman & ZieBler 1982) pointed to the differences between sensory and 

nonsensory features. 

In order to remain consistent in our terminology, we employ the more 

general term semantic features. By this we simply mean that the meaning of 

a word can be decomposed into a structure of features. 

When accepting the assumption of decomposition, it becomes clear that 

semantic codes are actually component codes. Semantic features are the 

components of semantic codes that represent the meaning of words. 

According to Assumption 2d in section 3.5, the activation of a component 

code inevitably leads to the activation of at least some of its components. 

Thus, within the framework of component codes, the assumption of 

decomposition is compulsory. 

There are different views on whether or not the decomposition of word 

meaning is obligatory. Kintsch (1974, 1980) rejected this idea and assumed 

that the meaning of a concept can be retrieved without activating its 

semantic features. His argument was based on the notion that complex 

concepts with many features will be processed more slowly than less 

complex concepts with fewer features. Only if this assumption, which 

Gentner (1981) termed the complexity hypothesis, can be empirically 

supported, would Kintsch be inclined to accept that concepts are actually 

represented by features. Experimental results reported by Kintsch (1974, p. 

219), however, suggest that complex concepts are not processed more slowly 

nor do they require more memory capacity than less complex concepts. 

Because of this failure to support the complexity hypothesis, Kintsch 

assumed that the meaning of a word is not represented by semantic features 
at all. 

The debate on the decomposition and complexity hypotheses centers 

around the question of whether or not semantic information is represented 

by holistic or component codes. Rejecting the decomposition hypothesis 

means to neglect assumptions regarding the format of semantic codes and 

thus to assume a holistic format by default. In this case, the meaning of 

concepts must be defined by holistic prototypes, schemas, or templates (cf. 

the example in E. E. Smith & Medin, 1981, p. 130). In accepting the 

assumption of holistic codes, the complexity hypothesis is rendered mean¬ 
ingless. 

By accepting the decomposition hypothesis, on the other hand, one must 

assume component codes. Now the assumptions regarding the type of 

semantic features and their structure must be considered. The decomposi¬ 

tion hypothesis, however, does not offer a satisfactory answer to this 
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question. If explicit assumptions on the structure of component codes are 

lacking, then the decomposition hypothesis is left ill-defined and must, by 

necessity, give way to the complexity hypothesis. The complexity hypothesis 

is based on the more or less implicit notion of a hierarchical coding 

structure. Hierarchical structures, however, lead to the prediction that with 

more complex semantic codes, activation and search processes become 
slower. 

Chapter 8 shows that for interconnected structures the converse predic¬ 

tion holds true. Complex codes can be processed faster than less complex 

ones. The decomposition hypothesis must, therefore, not be rejected until it 

is ascertained whether or not the complexity hypothesis is correct. Thus, 

both hypotheses are interdependent (Fig. 7.1) and cannot be examined 

independently of each other. 

FIG. 7.1. The interdependence between the decomposition and the complexity 

hypotheses. 

The following section demonstrates the apparent persuasiveness of the 

assumption of a hierarchical coding format for semantic information. 

Chapter 9, however, shows that even a hierarchy of concepts can be 

represented by an interconnected structure of semantic features. 

7.3 STRICTLY HIERARCHICAL STRUCTURES OF 
WORD MEANING 

Kintsch (1980) correctly pointed out that the assumption of a hierarchical 

concept structure is more thar 2,000 years old. Aristotle (Topika, book 1, 
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chap. 4, 5, 15; in Rolfes, 1918) dealt with the logical definition of words and 

introduced a semantic hierarchy in which each genus is divided into 

subgenera. According to Aristotle, the most important feature of a concept 

is the way it refers to its natural superordinate concept or genus (genus 

proximum; cf. the interconceptual features of Hoffmann, 1986, or the 

abstract features of Klimesch, 1981). For example, the concept “man” is 

best described as belonging to the genus sensuous being. The proposition 

“humans are living beings,” on the other hand, is too general, as plants are 

also living beings. 
But Aristotle also distinguished between other important properties that 

need to be considered in the classification of a concept, namely Proprium 
and Akzidenz. Proprium stands for those features characteristic of only one 

particular concept, but not for other concepts of the same genus. E. E. 

Smith et al. (1974) termed these features “defining.” Thus, for example, the 

feature “is capable of learning grammar (i.e., reading and writing)” applies 

only to “human” but not to “bird” or any other member of the genus living 
being. 

Aristotle also considered those conceptual properties that do not fall 

under the strict definition of Proprium and are thus not defining in the 

narrow sense of the term. The feature “has two legs” distinguishes “human” 

from “dog” or “hare,” but not from “bird.” There is an obvious similarity 

between this proposal and the definition of characteristic features by E. E. 

Smith et al. (1974). Although characteristic for humans, the feature “has 

two legs” is not a defining feature, as birds as well as other living beings also 

have two legs. 

Those features summarized under the term Akzidenz are neither a 

proprium nor a genus and only describe some transitory properties such as 

“sleeping” or “sitting.” Figure 7.2 gives an example of a strictly hierarchical 

network used by Kintsch (1980) to explain Aristotle’s classification hierar¬ 

chy. 

As Fig. 7.2 shows, the meaning of a word is determined by its genus as 

well as by a variety of specific properties. Aristotle’s theory of word 

meaning can thus be described as a semantic feature theory. It bears an 

obvious similarity with well-known memory models (Collins & Quillian, 

1969, 1970; E. E. Smith et al., 1974). 

Katz and Fodor’s (1963) semantic theory, which has been so influential in 

psychological research, is also based on the assumption of a strictly 

hierarchical structure. The question raised in their theory concerns the 

meaning of morphemes and the interpretation of different grammatical 

structures. Katz and Fodor assumed that the meaning of morphemes is 

stored in a dictionary, and that projection rules guarantee access to the 

lexical items. Projection rules can, therefore, be regarded as an important 

link connecting syntactic and semantic information. The term dictionary 
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Living being 

Sensuous being Plants 

Dog Man capable of learning 
grammar 

= defining 
Proprium 

has two legs = not defining 
Proprium 

sleeping 

= Akzidenz 

sitting 

FIG. 7.2. An early feature model of word meaning: The semantic hierarchy of 
Aristotle. Adapted from Kintsch in Attention and Performance (R. S. Nickerson, Ed.), 
1980. © 1980 by Lawrence Erlbaum Associates. Reprinted with permission. 

refers to what is essentially known as semantic memory. Both terms are 
often used synonymously. Because each spoken or written sentence must 
first be analyzed phonemically and graphemically, it can be assumed that 
each dictionary entry is first analyzed according to syntactic and grammat¬ 
ical characteristics. Thus, at the beginning of the lexical entry, there are 
so-called grammatical markers indicating the word group (nouns, verbs, 
adjectives, etc.) to which a certain lexical item belongs. The different 
meanings of lexical items are represented by two different types of 
features —semantic markers and distinguishers. Semantic markers are gen¬ 
eral features common to all lexical items located on any given lower level of 
the conceptual hierarchy; distinguishers, on the other hand, give a specific 
meaning to each lexical item that distinguishes it from competing meanings. 
The famous “bachelor” example in Fig. 7.3 illustrates what is to be 
understood by grammatical and semantic markers as well as by dis¬ 
tinguishers. 

We thus see that the well-known and influential work of Collins and 
Quillian (1969) did not actually introduce the first hierarchical semantic 
memory model. Theirs, however, was the first model to undergo a 
systematic experimental examination. 

Collins and Quillian’s model is, like HAM, ACT, or ACT*, based on a 
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“Bachelor" Level of graphemic-phonetic 
analysis 

(Noun) Analysis of word group 

[Young seal] [Academic degree] [Not married) 

FIG. 7.3. The “bachelor” example,. Different types of parentheses denote grammatic 
markers (), semantic markers (j, and distinguishers [ ]. From Katz and Fodor, 1963, 
Language, 39, p. 186. © 1963 by Linguistic Society of America. Adapted with 
permission. 

simulation program, the Teachable Language Comprehender (TLC). It 

exhibits a strictly hierarchical structure surprisingly similar to Aristotle’s 

classification structure. However, Collins and Quillian decomposed the 

meaning of any concept (even those of abstract superordinate concepts) into 

features. Each feature is stored only in the highest possible place in the 

conceptual hierarchy. Figure 7.4, for example, shows that the feature “fly” 

is stored with “bird” but not with “canary” or “ostrich.” 

FIG. 7.4. A strictly hierarchical semantic network as suggested by Collins and 
Quillian, 1969, Journal of Verbal Learning and Verbal Behavior, 8, p. 241. © 1969 by 
Academic Press. Adapted with permission. 
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The classic approaches of Aristotle and Katz and Fodor share two 

important features with Collins and Quillian’s model: (a) the strictly 

hierarchical structure, and (b) the assumption that the meaning of a concept 

can be defined by a set of features. It is the latter assumption that has often 

been criticized (cf. Fodor, Garret, Walker, & Parkes, 1980). Chapter 9 deals 

with these questions in more detail. Here we want to show how strictly 

hierarchical models succeed in explaining experimental results. 

7.3.1 The Experimental Paradigm of the Type “Is X 
a Y?” and Its Most Important Results 

In testing the predictions of semantic memory models, three different types 

of experimental paradigms are used: (a) sentence verification (e.g., Collins 

& Quillian, 1969; E. E. Smith et al. 1974), (b) semantic judgment (Klimesch, 

1981, 1982a), and (c) priming paradigms (section 9.7). In spite of the 

differences between these paradigms, there is one essential characteristic 

common to all semantic memory experiments. They all test relations either 

between different concepts (such as super- or subordinate relationships) or 

between a particular concept and its features. 

In sentence verification experiments, these relations are expressed in the 

form of sentences (e.g., “A canary is an animal”) and subjects have the task 

of judging the validity of this semantic relation by responding with “yes” or 

“no.” In semantic judgment tasks, on the other hand, a superordinate con¬ 

cept (e.g., animal) is presented first, followed by the presentation of a series 

of different concepts (“canary,” “car,” “shark,” etc.). An alternative way of 

presenting this is to show the subjects concept pairs (e.g., “canary” —“eagle,” 

“car” —“shark”). They then have to judge whether or not each concept 

belongs to the appropriate superordinate concept. In priming experiments, 

the presentation of stimulus pairs is obligatory. Here, one is not only in¬ 

terested in the effects of semantic relations, but also in the duration of the 

interstimulus interval separating the presentation of the two stimuli. 

Sentence verification paradigms are problematic insofar as not only 

semantic but also syntactic relations vary. Because only semantic relations 

are important here, a possible confounding of syntactical and semantic 

relations is an uncontrollable source of misinterpretations. This is possibly 

the reason why in more recent research, semantic judgment and priming 

experiments have been preferred to sentence verification paradigms. 

All of the three paradigms focus on semantic relations existing between 

two concepts or semantic features termed “X” and “Y” in the following. 

Another characteristic common to these paradigms is that the validity of a 

semantic relation can be judged only by responding with “yes” or “no”. The 

dependent measure is reaction (verification) time. 

Table 7.1 shows the design and the most important results of the 

well-known experiment by Collins and Quillian (1969), which is of the type 
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TABLE 7.1 
An Example of a Semantic Decision Task of the Type “Is X a Y?” 

A. Experimental Design 

A set of 224 sentences is presented. Each sentence states a semantic relationship between 

two concepts X and Y or a concept X and a feature x. For half of the sentences the se¬ 

mantic relationship is true, for the other half false. Subjects respond by pressing a yes or 

no response key. The dependent measure is RT. 

B. Results 

Level in 

Concept Hierarchy X Y 

RT 

(ms) X X 

RT 

(ms) 

0 Salmon — Salmon 1,000 Salmon — Spawn 1,305 

1 Salmon — Fish 1,165 Salmon — Gill 1,385 

2 Salmon — Animal 1,240 Salmon — Skin 1,465 

Note: From Collins and Quillian, Journal of Verbal Learning and Verbal Behaviour, 9, p. 

244. © 1969 by Academic Press. Adapted with permission. 

“Is X a Y?” The results are straightforward and can easily be interpreted in 

terms of the memory network, as depicted in Fig. 7.4. An examination of 

the respective means in Table 7.1 shows that reaction time increases as the 

number of links that need to be activated in the conceptual hierarchy 

increases. Therefore, the same rules seem to apply to semantic memory as 

to fact retrieval: The more complex the memory network, the longer the 

decision times. 

7.4 NONSTRICTLY HIERARCHICAL MODELS OF 
WORD MEANING 

Collins and Quillian’s model (1969) was criticized by Rips, Shoben, and E. 

E. Smith (1973), among others, for not being able to explain why, for 

example, “eagle” can be recognized and classified more easily as a bird than 

“penguin.” In other words, how can strictly hierarchical networks explain 

typicality effects? 

This and similar objections led Collins and E. F. Loftus (1975) to revise 

their model and to enlarge the number of assumptions. The most important 

of the 13 assumptions refers to the structure of semantic representation: 

“The . . . semantic network is organized along the lines of semantic 

similarity. The more properties two concepts have in common, the more 

links there are between the two nodes . . . and the more closely related are 

the concepts” (p. 411). Here, for the first time, the concept of semantic 

similarity or relatedness is systematically applied to describe semantic 

relations, and the notion of hierarchy is pushed into the background. 
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The Collins and Loftus model is the first connectivity model of semantic 

encoding. It enables predictions that were denied by the strictly hierarchical 

model of Collins and Quillian (1969), such as the hypothesis that the more 

features two concepts share, the faster they can be compared with each 

other. Collins and E. F. Loftus’ (1975) research has led to a new approach 

that refers to the internal structure of concepts and the relation between 

different semantic features within a concept. This issue is still of crucial 

importance in semantic memory research (Johnson-Laird, 1987; Malt & E. 

E. Smith, 1984; McNamara & Sternberg, 1983; Medin & E. E. Smith, 1984; 

Rosch, 1978). 

Despite its originality and persuasive plausibility, Collins and Loftus’ 

spreading activation theory has not gained nearly as much importance as 

models of fact retrieval such as ACT. One of the reasons for this is that 

almost any prediction can be derived from the 13 assumptions underlying 

this theory. As an example, consider a task of the type “Is X a Y?” in which 

a subject has to judge a superordinate relationship (e.g., “Is an eagle a 

bird?”). Assumption 8 in Collins and Loftus’ theory states that concepts 

may be compared on the basis of their features. On the other hand, 

Assumption 9 postulates that the discovery of a superordinate concept link 

suffices to make a semantic decision. Both assumptions can, therefore, be 

arbitrarily interchanged when trying to predict or explain the results of a 

semantic judgment task. 
Chapter 9 deals in detail with the theoretical and empirical foundation of 

the connectivity model put forward by Klimesch (1987). It shows that the 

assumption of special superordinate concept links is superfluous and 

misleading (section 9.2.4). 

Distributed memory models are also based on the assumption of inter¬ 

connectedness (J. A. Anderson & Hinton, 1981, Knapp & J. A. Anderson, 

1984). These models, however, can only be partially applied to semantic 

memory. Furthermore, and most importantly, they do not enable clear 

predictions regarding the speed of search and judgment processes in 

semantic networks (section 12.1). 



The Connectivity Model 

Our discussion of hierarchical network models has shown that the speed of 
search processes decreases as the complexity of networks increases. This 
amounts to what is known as the paradox of retrieval interference: The 
more information stored in memory, the slower it works. However, we have 
demonstrated that not only theoretical considerations, but also experi¬ 
mental findings (section 6.3; chap. 9) refute the general validity of this 
notion. 

Various suggestions were made on how to overcome the interference 
paradox. These refer in part to the modification of structural assumptions 
and to the definition of new processing assumptions. Strictly hierarchical 
structures were modified and gave way to nonstrictly hierarchical structures 
(J. R. Anderson, 1981; Collins & E. F. Loftus, 1975). New processing 
assumptions, those regarding indirect and reverberating activation, were 
introduced, mainly by J. R. Anderson (1981, 1983a, 1983c). ACT* is based 
primarily on the concept of reverberating activation. Each activated node 
reflects back onto the node(s) from which information was received. This 
principle may explain why nodes with many links (i.e., nodes rich in 
information) are retrieved faster than nodes with fewer links. This inter¬ 
pretation, however, not only leads to new problems, as is shown in this 
chapter, but also threatens the empirically well-grounded explanation of the 
fan effect. 

In order to solve these problems, an alternative model already suggested 
elsewhere (Klimesch, 1987) —the connectivity model —is outlined in this 
chapter. It is founded on three basic assumptions: on the structural 
assumption of interconnected codes (see Assumption A, section 8. 2. 1), on 

82 
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the processing assumptions of indirect activation, and on the unlimited 

capacity of spreading activation (summarized under Assumption B, section 

8. 2. 2). The combination of these assumptions results in the prediction 

that the extent of indirect activation increases with the number of intercon¬ 

nected nodes. Here the basic idea alleges that interconnected structures 

allow input activation to increase significantly, thereby boosting processing 

speed. The connectivity model will therefore enable us to explain how 

processing speed varies as a function of the degree of complexity and the 

extent of interconnectedness. Both of these factors operate together to 
reduce processing time. 

8.1 STRUCTURAL ASSUMPTIONS: 
INTERCONNECTEDNESS AS A GENERAL 

PRINCIPLE FOR THE ENCODING OF SEMANTIC 
INFORMATION IN LTM 

We proceed from the basic assumption that interconnected facts are stored 

in LTM. By this we mean that each code is represented not in isolation 

from, but instead in direct relation to, other codes in LTM. The more links 

there are between codes, the better the information contained in these codes 

can be integrated into LTM. Integrated facts can best be represented by 

interconnected structures, whereas nonintegrated (i.e., isolated) facts are 

best represented by strictly hierarchical structures. 

It would be wrong to assume that our memory is constructed exclusively 

from interconnected codes. The fan effect, which can be explained in terms 

of strictly hierarchical structures, contradicts this assumption. We can 

assume, however, that nonintegrated codes or strictly hierarchical struc¬ 

tures form an exception to the general principle of integrated storage. ACT 

proceeded from the exact opposite assumption. Here, the general principle 

was strictly hierarchical coding, and the nonstrictly hierarchical networks 

that are similar to interconnected structures were the exception. The 

assumption regarding strictly hierarchical structures appears to be justified, 

especially in those cases in which new information —which has not yet been 

interconnected with existing knowledge or cannot be interconnected or 

integrated — has been learned. This is precisely the case with subjects 

participating in a fact retrieval experiment. They must learn new noninte¬ 

grated facts that are in no way related to their previous knowledge. 

This unusual situation corresponds to what is ordinarily called rote 
learning. In rote learning no emphasis is placed on comprehension, which in 

our context means interconnecting the acquired items. This comes close to 

the everyday experience reflected in the following definition of rote learning 

from the Oxford English Dictionary: “Knowledge got by repetition, from 
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unintelligent memory.” Here, the loss or forgetting of only one component 

(a node or link) of the network leads to the loss of stored information. In 

interconnected structures, on the other hand, there are more links con¬ 

necting one node with others and thus these structures can be used in 

reconstruction. Only interconnected but not hierarchical structures bring 

about the necessary redundancy that enables the reconstruction of lost or 

forgotten information. 

8.1.1 Interconnected Structures and the 
Inadequacy of the Computer Metaphor 

Our criticism of hierarchical network models brings us to almost the same 

conclusion we arrived at in our criticism of forgetting theories. In chap. 3 

it was the implicit assumption of holistic codes that completely agreed with 

the computer metaphor. A similar conclusion was drawn in chaps. 5 and 6, 

where we considered hierarchical memory models. In the latter case it was 

the assumption of strictly hierarchical structures, whereas in the former it 

was the assumption of holistic codes on which the computer metaphor was 

based. 

Holistic and strictly hierarchical codes are by no means identical, 

although they do have one important feature in common: In both cases the 

contents of the codes are isolated, that is, they are not related to each other. 

Instead, they are only indirectly connected by common links. 

If memory were to contain isolated, holistic, and/or strictly hierarchical 

codes, then it would be a collection of nonintegrated pieces of information. 

Memory content would be similar to that of computers in that it would be 

built on clearly distinguishable and nonoverlapping codes, which are not 

connected to each other except by means of their addresses. 

From the very beginning, memory psychologists were puzzled by the 

phenomenon of association, which is a powerful process enabling us to 

detect overlapping commonalities, even with facts that appear to be 

heterogeneous and unrelated. If one had to explain these processes in terms 

of how conventional computers work, one would be forced to rely on 

processing rather than on structural assumptions. Once again, this is 

because the contents of locations are not related to each other. Accordingly, 

any algorithm designed to explain associative processes must rely on 

processing assumptions focusing on the means by which addresses are 

accessed. As we already know, such an algorithm would inevitably lead to 

the paradox of retrieval interference. 

The phenomenon of retrieval interference constitutes a paradox within 

the context of human memory. However, within the context of the 

computer metaphor it is a basic principle by which information is pro¬ 

cessed. Computers with parallel processing capabilities are to some extent 
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an exception (connection machine, Gabriel, 1986; Hillis, 1985). Here, 

although large amounts of information can be processed without deceler¬ 

ation, there is still no way of explaining why large amounts of information 

can be processed faster than small amounts. 

8.1.2 Interconnected Structures and the Question 
of an Efficient Storage 

E. E. Smith, Adams, and Schorr (1978) were undoubtedly correct in stating 

that the high efficiency of human memory is due to an especially efficient 

structuring of the information stored within it. We, however —unlike E. E. 

Smith et al. (1978) or J. R. Anderson (1976, 1983a) —do not assume that 

high memory efficiency can be primarily described by hierarchical struc¬ 

tures. We do assume that interconnected structures enable the high effi¬ 

ciency and performance of memory. 

When the following four criteria have been met there is efficient storage: 

1. Each piece of information may only be stored at one location in 

memory. 

2. The information relevant to the goal of the search process must be 

quickly retrievable. 

3. It should be possible either to form connections between relevant 

pieces of information easily, or these should already exist. 

4. The speed of the search process may not systematically decrease 

with an increasing amount of permanently stored information. 

Strictly and not strictly hierarchical models are not capable of meeting 

Criterion (4) or to a certain extent even Criterion (2). The theoretical 

analysis in this chapter shows that the assumption of interconnected 

structures meets the necessary criteria for efficient storage. 

8.2 BASIC ASSUMPTIONS AND PREDICTIONS 
UNDERLYING THE CONNECTIVITY MODEL 

The connectivity model is based on three central assumptions: the repre¬ 

sentational assumption about connectivity, and on the previously men¬ 

tioned processing assumptions. The central prediction that search processes 

run faster as more information is stored may generally be derived from 

these assumptions. By doing this, we proceed from the notion that the 

duration of search processes depends on the speed of indirect spreading 

activation. It also depends on the fact that the amount as well as the speed 
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of indirect activation increases with the number of activated nodes or 

coding components. 
In discussing the connectivity model, we distinguish between qualitative 

and quantitative levels of description. This section deals with the qualitative 

level and forms the basis for the next section, where we discuss the 

quantitative approach. Here we focus on the central assumptions about 

connectivity and indirect activation (Assumptions A and B) in their relation 

to those assumptions regarding the type and duration of search processes 

(Assumptions C and D). 
It should be emphasized that these four assumptions have not been 

conceived as an axiomatic system. Instead, their compilation was governed 

by didactic considerations. This was done in an attempt to give a clear and 

simple presentation of the connectivity model and to enable an understand¬ 

able comparison of our assumptions with those of ACT and ACT*. In 

order to achieve this didactic objective, which is only important for the 

qualitative description of the model, it is necessary to group several 

elementary albeit related assumptions into more general assumptions. The 

four assumptions are to be understood as a guide in the description of the 

connectivity model. Section 8.3 provides a detailed discussion on the diverse 

elementary assumptions. 

8.2.1 Assumption A: The Structure of Codes in 
LTM 

Assumption A determines that codes stored in LTM are represented by 

components (chap. 4) and the structure connecting the individual compo¬ 

nents with each other is not hierarchical but interconnected. The assump¬ 

tion of connectivity contradicts the previously discussed memory theories 

(ACT and ACT*) and means that the components of a code are stored as 

integrated and not isolated information components. 

The components of an interconnected code are connected to a source 

node, which may function as an access point for search processes origi¬ 

nating in STM. The source node —represented by an “x” in Fig. 8.1 —is part 

of an interconnected code and is directly connected to all code components 

by a link. Any node connected to all of the remaining n-1 nodes of the same 
code may serve as an access node. 

8.2.2 Assumption B: Indirect Activation and the 
Inadmissability of Reverberating Activation 

The assumption of indirect activation is derived from Assumption A. It 

means that activation originating in a source node flows to connected 

nodes, which in turn send convergent activation back to the the source 
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node. Thus, for indirect activation to occur, the following three criteria 

must be met: (a) one or more nodes of a network must be activated by 

convergent pathways; (b) those activation processes leading to convergent 

activation must stem from the same source node; and (c) they must meet 

simultaneously or almost simultaneously within a critical time span t(/c) in 

order to enable the accumulation of convergent activations (Assumption 2 

in section 8.3.3). Indirect activation can only become effective in intercon¬ 

nected structures, but never in hierarchical structures. 

Indirect activation should not be confused with reverberating activation 

or preactivation. Reverberating activation means that activity flows back 

from each activated node in the opposite direction to the original flow of 

activation. The assumption of reverberating activation is excluded from the 

framework of the connectivity model (Assumption 5 in section 8.3.3). The 

reason for this is a consequence of Assumption C, which indicates 

conditions under which search processes are terminated. 

The term preactivation, on the other hand, is used if activation processes 

meet and intersect with each other, provided they originated from different 
source nodes. Thus, processes of preactivation only play a role when 

activation processes proceed from two or more source nodes (section 8.6). 

8.2.3 Assumption C: The Duration of the Search 
Process 

The search process begins with the activation of one or more source nodes 

and ends as soon as activation flows back to one of these nodes. How many 

source nodes are activated depends on the search goal (sections 8.6, 8.7.1). 

If it consists in searching only one single code, then the activation of a single 

source node will suffice. However, if common pathways between several 

codes are to be found, then several source nodes need to be activated. The 

following section starts with the discussion of simple search processes that 

spread from one single source node. 

If reverberating activation were effective, then the search process would 

be terminated straight after the activation of the first node: Activation 

would flow back from this node to the source node and the search process 

would end even before the first results were in. Consequently, Assumption 

C and the assumption of reverberating activity cannot be effectively 

combined with each other. 
Indirect activation flowing back to the source node indicates a successful 

search process, and thus provides evidence of a positive result. The amount 

of indirect activation corresponds to the amount of positive evidence: the 

more indirect activation flows back, the greater the “echo” of the search 

process and thus the greater the evidence that a positive result has been 

achieved. In the following, let / stand for the extent of indirect activation 
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and t(I) for the length of a search process with a positive result (i.e., the time 

elapsed, before indirect activation flows back). 
If within a critical waiting period t(w7) no activation flows back to any of 

the source nodes at which the search process originated, this would indicate 

an unsuccessful search, that is, the sought-after information cannot be 

found. In this case the search process is terminated after time t(w/) has 

elapsed. 
Now a simple but important conclusion can be drawn from Assumption 

C: Search processes showing positive results must terminate sooner than 

comparable search processes showing negative results. Thus, t(I) < t(w7). 

Only under this precondition can Assumption C be considered consistent. 

8.2.4 Assumption D: The Speed with Which the 
Result of a Search Process Can Be Processed 

The cognitive process of retrieval consists not only of the search process, 

but also of the evaluation of its results. For example, it must be evaluated 

whether or not the outcome of a search corresponds to original expectations 

or to other knowledge. 

Assumption D assumes that the extent of positive evidence / not only 

indirectly facilitates the speed of further processing via short search times, 

but also in a more direct way: The greater the positive evidence I, the faster 

the result can continue to be processed. 

8.2.5 The Most Important Predictions of the 
Connectivity Model 

Assumptions A, B, and C form the basis for the following crucial 

predictions of the network model. Assumption D will be dealt with in 

greater detail in section 8.8. This section considers only those predictions 

referring to the interaction between the complexity of a network and the 

speed of the search process. We distinguish between two predictions: 

Prediction 1. In interconnected structures, the extent of indirect activa¬ 

tion (7) increases with the number of nodes or components n. 
Prediction 2. In interconnected structures, the speed of the search process 

increases and time t{I) decreases with the number of nodes or components 
n. 

Just how these two predictions are derived from the assumptions underlying 

the connectivity model is discussed within the framework of the quantitative 

description. However, before going into detail, consider an outline of the 

general procedure shown in the example depicted in Fig. 8.1. 
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FIG. 8.1. A completely interconnected component code with 5 components, com¬ 
prising 4 feature nodes (2, 3, 4, and 5) and 1 source node (x). A search process, initiated 
in STM, has direct access only to the source node (x). From here, activation spreads in 
three stages. In the first stage (bold lines), activation flows to all of the feature nodes 
(2, 3, 4, and 5). In the second stage (dashed lines), each feature node sends activation 
to neighboring feature nodes. Then, in the third stage (dotted lines), activation spreads 
back to the source node (x). 

This example shows a completely interconnected component code with 5 

components (nodes) and 10 different links: Each of the five nodes is 

connected to every other node by a link. Because all nodes are connected 

with each other, each node can take on the function of a source node 

(Assumption A). We can, therefore, assume that the search process can 

begin at any node (indicated by “x” in Fig. 8.1) and from there it can 

encompass all the other nodes of the network (see the definition of 

component codes in sect. 3.5). The crucial idea in all subsequent consider¬ 

ations has already been determined by Assumptions B and C: The search 

process ends with a positive result as soon as indirect activation flows back 

to that node where the search process originated. In other words, the search 

process is terminated, if a correspondingly strong “echo” is found in 

memory. 
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Now the close interdependence between Assumptions A, B, C, and D 

becomes clear. Indirect activation occurs only in interconnected, but not in 

fanlike hierarchical structures. Without indirect activation, however, it is 

impossible within the confines of our model to determine the duration of a 

search processes. 
This idea can be illustrated using the following examples: If the five 

components of the code in Fig. 8.1 were not interconnected, then the links 

represented by dashed lines could be omitted, and only the fanlike structure 

represented by the continuous links would remain. Although activation 

originating from the source node x would travel along the continuous links, 

it would nevertheless terminate at nodes 2-5. In this case —which was 

already discussed in detail in the framework of ACT —the result (according 

to Equations 6.2 and 6.4) would be that activation time increases with the 

number of nodes. Even if we were to allow for the assumption of 

reverberating activation, it would still be impossible to explain why 

(according to Prediction 2) activation time should decrease when the 

number of nodes increases (see the detailed discussion in section 8.4.2). 

These considerations underscore the importance of Assumption A. How¬ 

ever, the situation changes fundamentally if we start out from the assump¬ 

tion of interconnected codes. Now activation spreads out across nodes 2-5 

and flows in the form of indirect activation back to the source node. 

8.3 THE QUANTITATIVE BASIS OF THE 
CONNECTIVITY MODEL 

The assumptions discussed in the previous section are still too general to 

enable conclusive predictions. However, this is possible if processing 
Assumption B is specified in such a way as to allow for a quantitative 

evaluation of spreading activation. Thus, we set out from the following 

definitions and processing assumptions: 

8.3.1 Definitions Underlying Assumption A: 
Completely and Partially Interconnected Structures 

A structure is completely interconnected, if—in addition to source node x — 

any one of the n nodes is connected with all the remaining n - 1 nodes (cf. 

Fig. 8.1). The number of links m in completely interconnected structures 
can be determined according to Equation 8.1: 

m = [«(n - l)]/2 (8.1) 

Thus, a structure is partially interconnected if the source node x is 

connected via links to all other n - 1 nodes, and if each of the n - 1 nodes 
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FIG. 8.2. The structure of partially interconnected codes must be closed as in (a) or 
(b) and must not disintegrate into separate substructures as in (c) or (d) which are not 
interconnected with each other. 

is connected to the remaining n — 2 nodes in such a way that a “closed” 

network is created. The network of a code is closed if all the n — 1 nodes 

are directly or indirectly connected with each other by a pathway that does 

not pass through x (cf. Figs. 8.2a and b with Figs. 8.2c and d). A code is 

interconnected if it meets the requirements for partially interconnected 

structures. 

Because we assume that only interconnected codes are stored in LTM, 

those not corresponding to the previous definition (Figs. 8.2c, d) are 

excluded from any further consideration. In doing so, we are not pro¬ 

ceeding from an arbitrary criterion, but instead from the conclusions 

derived from the assumptions discussed earlier. This is because Assump¬ 

tions B and C are only meaningful if the result of a search process is 

unambiguous and if it is clear in which code indirect activation originated. 

Structures like those depicted in Figs. 8.2c and d, however, actually consist 

of two completely interconnected codes that share a common source node. 

In this case, indirect activation spreading from both codes to the common 
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source node would accumulate, thereby making it impossible to determine 
the extent of activation of each code. Therefore, each code must have only 
one source node (Fig. 8.3). 

8.3.2 The Connectivity Model and Hierarchical 
Nodes 

Surprisingly, the fact that the connectivity model can also be applied to 
noninterconnected or even hierarchical structures by no means contradicts 
the assumptions underlying our model. In order to understand this, it is 
necessary to keep in mind that the definition of interconnectedness applies 
only to the internal structure (i.e., the format) of LTM codes. Conse¬ 
quently, this definition in no way determines how different codes are 
interconnected. Structures interconnecting different codes may well be 
hierarchical, as can be seen in Fig. 8.3. 

FIG. 8.3. Interconnected nodes may be linked by a hierarchical structure (dashed 
line). A node which is only linked by hierarchical connections (node o) is termed 
hierarchical node. Hierarchical nodes serve as access nodes for a concept with multiple 
meanings (cf. the concept move in Fig. 10.4). 

However, a hierarchical node (like the one depicted in the bottom of Fig. 
8.3 or in Fig. 10.4) is considered a passive node, which transmits activation 
only if it is used as an access node. Activation arriving at a hierarchical node 
may accumulate there with other activation, but will never be transmitted to 
other nodes (see section 10.1.4 for an example). 

The connectivity model must also be capable of describing search 
processes that take place between different codes (sections 8.6 and 8.7.1). 
Thus, it is a necessary precondition that the processing assumptions of the 
connectivity model apply to all structures, and not only to those that are 
interconnected. 

8.3.3 On the Specification of Processing 
Assumption B 

1. Any activated node can pass on the entire amount of activation to 
each of the links leading from that node. Therefore, this assumption is 
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termed the “unlimited capacity of spreading activation.” Assumption 1 

describes a discrete and discontinuous spreading activation process. The 

only exception is that hierarchical nodes pass on activation only if they are 
used as access nodes. 

2. A node remains active only within a critical time span t(/c). If an 

activated node does not receive any further activation within t(k), then its 

activity is set at 0. If activation processes converge at different times but 

within t(k), we speak of “simultaneous” activation of this node. 

3. If a node is activated, then the resulting activation is equal to the sum 

of the original and newly received activity. 

4. Each link can be activated in both directions simultaneously. 

5. Assumption 4, however has the restriction that reverberating activity 

is inadmissable. This means that each link, after it has passed on its 

activation to another node, cannot be activated by that same node in the 

opposite direction within time \/sh. Let s be the amount of activation 

transported by this link, and let h stand for an inhibiting (h< 1) or 

disinhibiting (h > 1) factor. For simplicity we assume that h equals unity (h 
= 1). In this case the duration of inhibition is reduced to 1/s. 

6. Time t{i), needed to activate a node /, is the reciprocal value of that 

amount of activation s{i) with which the link leading to this node was 

activated: t(i) = 1/5(0- 
7. All links and nodes show the same strength when in a “neutral” state, 

that is, in the absence of preactivation and inhibition. Different strengths 

for both links and nodes are the result of the spreading activation processes. 

Based on these assumptions we can show that there are two important rules 

governing the relationship between the number of nodes n and the amount 

of indirect activation /. First, the more nodes a code comprises, the more 

indirect activation / spreads back and, second, the faster it accumulates at 

the source node x. 

8.3.4 On Deducing Prediction 1: The Extent of 
Indirect Activation Increases with Complexity 

In interconnected structures we must differentiate between three different 

stages of spreading activation. In calculating this process, we once again 

turn to the example in Fig. 8.1. 

S.3.4.1 Activation Stage 1: Completely Interconnected Structures. In 

the first stage, all n - 1 nodes that are directly connected to source node x 

are — according to Assumptions 1 and 7 — activated by x with amount a (see 

the boldly drawn links in Fig. 8.1). We thereby assume that a is that amount 

of activation received by source node x. At the end of the first activation 
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stage, each of the n - 1 nodes (nodes 2-5) is activated with a. According to 

Assumption 6, the duration of the first activation stage is equal to 1/a. 

Because we have rejected the assumption of reverberating activation, no 

activation returns from the n - 1 nodes to x. The reason for this lies in 

Assumption 5: A link, in passing on its activation to the next node, cannot 

be activated in the opposite direction by this same node within t = l/s (here 

equal to 1/a). According to Assumption 6, the n - 1 nodes are activated 

after t = 1/a. Thus, after this point none of the n - 1 nodes is capable of 

sending activation back to x during an additional time interval of 1/a. 

8.3.4.2 Activation Stage 2: Completely Interconnected Structures. In 

the second stage, because of Assumption 5, activation flows from each of 

the n — 1 nodes to all n — 2 nodes (see the links represented by dashed lines 

in Fig. 8.1). Now each one of these links is activated in both directions 

(Assumption 4). We assume that in the second stage the amount of 

activation equals b. Thus, each of the n - 1 nodes is activated by all of the 

remaining n - 2 nodes with amount b. The sum of activation at each of the 

n - 1 nodes is, according to Assumption 3, equal to b(n - 2). Depending 

on whether or not we consider a dampening function during the course of 

spreading activation, the value of b will either be equal to a (in the case of 

the dampening function not being effective) or less than a (in the case of the 

dampening function being effective). It should be noted, however, that the 

value assumed by b is of no importance in deducing Predictions 1 and 2 (see 

the discussion of Equation 8.2). If we assume that the n - 1 nodes are still 

activated with amount a (i.e., that up to now t(k) has not been exceeded; 

Assumption 2), then this value is added to activation in Stage 2. At the end 

of the second stage, therefore, activation at each of the n - 1 nodes is equal 
to a + b(n - 2). 

Now let us once again consider the role of Assumption 5. As mentioned 

earlier, after Stage 1—which lasts for a time span equal to t = 1/a—no 

activation can flow back to the source node within an additional interval of 

1/a time units. Thus, only after time t = 1/a + 1/a has elapsed can nodes 

2-5 send back activation to x. The time it takes to finish Stage 2 is equal to 

\/b. Consequently, a total of 1/a + \/b time units have elapsed since x 

passed on its activation. Because 1/a + \/b is greater than or equal to 1/a 

+ 1/a, the links leading from the n - 1 nodes to node x have already been 

disinhibited by the time the second stage is finished and the third and final 

stage begins. On the other hand, at the end of the second activation stage, 

with all n - 1 nodes having been activated by the remaining n - 2 nodes, 
no activation can flow back to these n — 2 nodes. 

8.3.4.3 Activation Stage 3: Completely Interconnected Structures In the 

third stage an amount equal to a + b(n - 2) flows from each of the n - 
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1 nodes back to source node x. Because two stages have already expired 

since the beginning of activation, assume that t{k) has been exceeded 

(Assumption 2) and therefore that node x has in the meantime lost all of its 

original activation. At the end of the third stage, the source node is 

indirectly activated by [a + b(n - 2)] (n - 1). In any completely 

interconnected structure having three or more nodes with m = [n(n - l)]/2 

links, the amount of indirect activation / can be determined by the 
following equation: 

I = [a + b(n - 2)](n - 1). (8.2) 

Considering that a and b remain constant and do not vary with n, it 

becomes clear that / depends only on one variable, the number of nodes: 

The more components a completely interconnected structure comprises, the 

more indirect activation / will flow back to the source node x. 

Equation 8.2 confirms Prediction 1. At the same time we can also observe 

that Prediction 1 holds true even if we vary the values for t{k) and b. 
Although in both cases the absolute amount of / would change, this does 

not hamper the predicted relationship between / and n. 
This relationship is valid for both completely and partially interconnected 

structures, as is shown in Fig. 8.4. This figure gives an example of a 

partially interconnected structure in which each feature node is connected 

with the source node, but with only one of the remaining n — 2 nodes. 

Here, as in the case of completely interconnected structures, we may also 

distinguish between three different stages of activation. 

8.3.4.4 Activation Stage 1: Partially Interconnected Structures. As with 

completely interconnected structures, all n - 1 nodes are activated by 

amount a at the end of the first stage. Here too, Assumption 5 prevents 

reverberating activation from flowing back to source node x. 

8.3.4.5 Activation Stage 2: Partially Interconnected Structures. In the 

second stage, however, there are—in contrast to completely interconnected 

structures — fewer than the possible maximum of n - 2 links. In our 

example, the number of links is reduced to the minimum, that is, a single 

link. If we assume that in partially interconnected structures the average 

number of links is reduced by a fraction /, then the number of links in the 

second stage can be indicated by f{n - 2). At the end of the second stage, 

therefore, each of the n - 1 nodes is activated with the amount a + bf(n 

~ 2). 

8.3.4.6 Activation Stage 3: Partially Interconnected Structures. Here, 

as in the case of completely interconnected structures, activation from all n 
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FIG. 8.4. A partially interconnected code with a minimum number of interconnec¬ 

tions. 

— 1 nodes flows back to the source node. Node x is indirectly activated with 
an amount equal to [a + bf{n - 2)]{n - 1). 

Equation 8.3 applies to partially interconnected structures: 

/ = [a + bf{n - 2)](« - 1) (8.3) 

where 1 < f(n - 2) < (n - 2). 

Equations 8.2 and 8.3 differ only with regard to variable/, which lowers the 
extent of indirect activation for partially, as opposed to completely 
interconnected codes. Nonetheless, it can also be seen here that / increases 
with the number of nodes. This applies even to the case when there is only 
one link, f(n - 2) = 1. Although the accumulating effect of indirect 
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activation is weakened, / nevertheless increases by the amount (a + b)(n — 

1). 
In summary, we find that in both completely and partially interconnected 

structures there is a positive relationship between the amount of indirect 

activation I and the number of nodes n. The amount of indirect activation 

increases with the number of nodes in interconnected structures. Thus, the 

validity of Prediction 1 holds true for all the cases already discussed. 

8.3.5 On Deducing Prediction 2: The Speed of the 
Search Process Increases with Increasing 
Complexity 

We have assumed that the search process ends with a positive result as soon 

as indirect activation / flows back to the source node (Assumption C). The 

speed of the search process, therefore, depends on time t(J). In evaluating 

t(I), we proceed from Assumption 6, which also underlies other network 

models (cf. ACT, ACT* or Equations 6.2 and 6.4). It states that time t(i) 
needed to activate a link is the reciprocal value of activation a. Because we 

have already determined the amount of activation for Stages 1, 2, and 3, 

activation time t(T) can easily be calculated. For completely interconnected 

structures it was found that the amount of activation in the first stage equals 

a and in the second stage equals b. Up to the end of the second stage the 

activation process will therefore need only 1/a + l/b time units. It is at this 

precise moment that indirect activation accumulates at each of the n - 1 

nodes with strength a + b(n - 2). During the third stage, this amount flows 

back from each of the n - 1 nodes to x. Thus, the duration of Stage 3 is 

l/[a + b(n - 2)] time units. Accordingly, time t(I) needed for indirect 

activation to flow back to x can be determined by Equation 8.4: 

1(7) = 1/a + l/b + l/[a + b{n - 2)1. (8.4) 

In partially interconnected structures the first two stages also require 1/a + 

l/b time units. At the end of the second stage, however, there is compar¬ 

atively less indirect activation accumulating at the n - 1 nodes, equal to a 
-h bf (/i — 2). In the third stage then, this amount flows from all of the n 
— 1 nodes back to the source node. In this case, the duration of search 

process t (/) is defined by Equation 8.5: 

t(I) = 1/a -I- l/b + l/[a + bf(n - 2)] (8.5) 

In Equations (8.4) and (8.5), the number of nodes n only occurs in the 

denominator. This is why the duration of the search process is shortened 

with an increase in the number of nodes. Complex codes with many 

components can, therefore, be searched faster than less complex codes with 
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only a few components. This holds true for both completely and partially 

interconnected structures, as can be seen by comparing Equations 8.4 and 

8.5. 

8.4 THE CAPACITY OF SPREADING ACTIVATION 

If one compares the processing assumptions outlined earlier with those of 

ACT or ACT*, then it becomes clear that Assumption 1 contradicts the 

explanation of the fan effect. Assumption 5, on the other hand, is 

compatible with ACT, but not with ACT*. This is because ACT* is based 

on the assumption of reverberating activation. Most other processing 

assumptions, however, could just as easily have been adopted by ACT and 

ACT*. 

We have already outlined in detail how the explanation of the fan effect 

is based on the assumption that input activation (that activation received by 

a node) is equal to the sum of output activations (the sum of all activations 

spreading from that node). This is expressed by Equations 6.1 and 6.3, 

which are of crucial importance to ACT and ACT*. However, within the 

framework of Assumption 1 it is assumed that output activation (as the sum 

of all activations leaving a node) exceeds input activation. Figure 8.5 

illustrates the differences between the two assumptions. 

As can be demonstrated by Fig. 8.5, according to ACT and ACT* output 

activation for a particular link decreases as the number of links increases. 

This assumption not only leads to a notable weakening, but also to a 

significant deceleration of spreading activation (Equations 6.2 and 6.4) in 

ACT and ACT*. In view of this effect, we call the processing assumption, so 

central to ACT and ACT*, the limited capacity of spreading activation. 

Within the framework of the connectivity model we proceeded from the 

The calculation of output activation according to 

the ACT-model 
(Equations 6.1 and 6.3) 

the connectivity model 
(Assumption 1) 

-► 
Input 
activation = 1 

01=1/3 

o2=l/3 -► 
Input 

o3=l/3 activation = 1 

ol = l 

o2=l 

o3=l 

The sum of output activations The sum of output activations 
equals input activation. exceeds input activation. 

FIG. 8.5. The calculation of output activation according to ACT and the connectivity 
model. 
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assumption of an unlimited capacity of spreading activation (Assumption 

1). 
In what follows, we show that the predictions of the connectivity model 

are only valid when the capacity of spreading activation is either not limited 
or only partially limited. For this purpose, when evaluating a and b for 
Equations 8.2 and 8.3, we do not proceed from Assumption 1 of the 
connectivity model, but instead from Equation 6.3 of ACT and ACT*. As 
a result, it can be seen that neither prediction of the connectivity model is 
now valid, and search speed t(i) and indirect activation / depend on the 
capacity of spreading activation. 

Once again consider the example in Fig. 8.1: Because during the first 
activation stage n — \ links lead away from the source node, the amount of 
activation of nodes 2-5 is, according to Equation 6.3 of ACT, equal to \/{n 
— 1). Therefore, a equals 1 /(n - 1). In the second stage, a is “weakened” 
or divided by n - 2 links. For b we get 1 /[{n - l)(/7 - 2)]. When adopting 
these new estimates of a and b for Equation 8.2, we can determine the 
amount of indirect activation in completely interconnected structures: 

/ = [1 /(n - 1) + [l/((/7 - 1)(« - 2))] {n - 2)}{n - 1). 

Simplifying by (ti - 2) and {n - 1) we receive: 

I = [\/{n - 1) + 1 /(« - 1)] (n - 1) 
and finally: 1—2. (8.6) 

The same relationship also holds for partially interconnected structures, as 
the substitution of \/(n — 1) for a and 1 /[(« - 1) f(n — 2)] for b in 
Equation 8.3 shows: 

I = {l/(n - 1) + [1 /((« - 1 V(n - 2))]/(« - 2)j (n - 1). 

Simplifying by f{n - 2) and (n - 1) the result is 

/ = [\/(n - 1) + 1 /(n - 1)] (n - 1) 
and finally: 1=2. (8.7) 

This surprising result shows clearly that the assumptions of connectivity and 
indirect activation —if they are combined with the assumption of a limited 
spreading activation capacity—are by no means sufficient to confirm the 
predictions of the connectivity model. This demonstrates that Assumption 
1 is of central importance for the connectivity model. If we proceed from 
the assumption of limited capacity, then it can be seen that / no longer 
depends on the number of nodes n (Equations 8.6 and 8.7). ACT or ACT* 
is, therefore, not in a position to explain why the amount of indirect 
activation increases in interconnected structures. 

When calculating the duration of the search process t(I) while proceeding 
from the assumption of limited capacity, the central importance of As- 
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sumption 1 can be shown more clearly. The length of the search process in 
completely interconnected structures can be found by substituting the 
previously determined values of a and b in Equation 8.4: 

t(J) = n - 1 + (n - 1)(« — 2) + (n — l)/2. (8.8) 

In determining t(I) in partially interconnected structures, we must start out 
from Equation 8.5. By substituting the corresponding values of a and b we 
arrive at Equation 8.9: 

t(J) = n - 1 + (n - 1 )f(n — 2) + (n - l)/2 (8.9) 

According to the structure of Equations 8.8 and 8.9, therefore, an increase 
in n leads to an increase in search time t(I). 

Even if the assumption of a limited spreading activation capacity is 
combined with the assumptions of connectivity and indirect activation, it is 
not possible to substantiate the predictions of the connectivity model. This 
fact underlines the crucial nature of the assumption of a limited spreading 
activation capacity. 

8.4.1 The Assumption of Partially Limited 
Capacity: Explaining the Fan Effect on the Basis 
of the Connectivity Model 

Processing Assumption 1 contradicts the explanation of the fan effect. Both 
the assumption of limited capacity (underlying ACT*) and the assumption 
of unlimited capacity (Assumption 1) signify the final points on a contin¬ 
uous and bipolar dimension. Consequently, it is possible to proceed from 
the assumption of a partially limited spreading activation capacity. The 
following section shows that this assumption not only guarantees the 
explanation of the fan effect, but also supports Prediction 1 of the 
connectivity model. 

The capacity of spreading activation is partially limited if, on the one 
hand (as with the connectivity model), the sum of output activations 
increases with the number of links leading from a node, and if, on the other 
hand (as with ACT and ACT*), the output activation of each separate link 
decreases with the number of links leading from a particular node. Let o(j) 
be the strength of the output activation of link j, let O be the sum of all o(j), 
and let v be the total number of links leading from a node. The following 
function then satisfies the definition of a partially limited spreading 
activation capacity: 

o(j) = (Input activation) [(v + l)/v]. (8.10) 

In order to compare the results of Equation 8.10 with the assumptions of 
limited and unlimited spreading activation capacity, we have summarized 
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some numerical examples in Table 8.1. Here we can see that, according to 
Equation 8.10, output activation o(j) decreases with the number of links v 
leading from a node, but that at the same time the sum of output activations 
O not only exceeds input activation (which in this example is equal to 1), but 
is also enlarged by an increase in v. 

Is this assumption capable of changing the predictions of the connectivity 
model? In order to examine this question, let us calculate numerical values 
for a and b (of Equations 8.2 and 8.3) on the basis of Equation 8.10. In the 
first stage of activation, v equals n - 1 links (Fig. 8.1). Therefore, 
according to Equation 8.10, a = n/(n - 1), when assuming that input 
activation equals 1. In calculating b we have to consider the fact that in the 
second stage of activation input activation equals a = n/(n - 1). In 
completely interconnected structures v = n - 2 links. Therefore b = [n/(n 
~ 1)] [(a ~ !)/(« - 2)]. When simplifying by n - 1, b = n/(n - 2). If we 
now substitute these values for a and b in Equation 8.2, we discover: 

/ = [n/(n - 1) + [n/(n - 2)] (n - 2)}(n - 1). 

Simplifying by (n - 2) and (n — 1) yields: 

I = n + n(n - 1) or I = n2. (8.11) 

In partially interconnected structures there are also v = n - 1 links in the 
first stage of activation. In the second stage, v is reduced to f{n - 2). We 
see again that a = n/(n - 1), but for the second stage we find that b = 
[n/(n - 1)] {|/(rt - 2) + 1 ]/[f(n - 2)]}. Substituting these expressions into 
Equation 8.3 and simplifying by f(n - 2) yields: 

/ = [n/{n - 1) + \n/(n - 1)] [f(n - 2) + 1]} (n - 1). 

TABLE 8.1 
Output Activation o(j) as a Function of Spreading Activation Capacity and 

the Number of Links, v, Leading from a Node 

Spreading Activation Capacity Is 

Limited (ACT Model) Unlimited (Assumption I) Partially Limited (Equation 8.10) 

V o(j) O V o(j) O V o(j) O 

2 0.5 1 2 1 2 2 1.5 3 
3 0.33 1 3 1 3 3 1.33 4 
4 0.25 1 4 1 4 4 1.25 5 
5 0.2 1 5 1 5 5 1.2 6 
6 0.17 1 6 1 6 6 1.17 7 
7 0.14 1 7 1 7 7 1.14 8 
8 0.13 1 8 1 8 8 1.13 9 
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When simplifying by (n - 1) we get: 

/ = n + nf(n - 2) + n. (8.12) 

In both formulas, an increase in n also leads to an increase in indirect 
activation I. This shows that Prediction 1 remains unchanged if we adopt 
the assumption of partially limited capacity. 

In order to examine whether Prediction 2 can also be supported, we 
calculate the duration of the search process t(I), according to Equations 8.4 
and 8.5, by substituting the previously determined values for a and b. For 
completely interconnected structures we find: 

t(I) = (n - 1 )/n + (n - 2)/n + (n - 1 )/[n + n(n - 1)], 

which can be reduced to: 

t(I) = (2n - 3)/n + (n - 1 )/n2. 

After determining a common denominator we get: 

t(I) = (In2 -2n - 1 )/n2. (8.13) 

For partially interconnected structures we find: 

t(I) = (n - 1){ 1/n + f(n - 2)/[nf(n - 2) + n] + 
l/[nf(n - 2) + 2n]}. (8.14) 

In Equations 8.13 and 8.14, n appears in both the numerator and 
denominator. On the basis of this evidence, therefore, we are not able to 
judge whether t(I) will increase or decrease with n. Calculating t(I) for some 
different values of n shows, however, that in both cases activation time 
increases as the number of nodes increases (Table 8.2). 

TABLE 8.2 
The Relationship between t(l) and the Number of Nodes n 

Equation n = 4 n = 5 n = 6 n = 7 n = 8 n = 10 n = 12 n = 100 

8.13 1.438 1.560 1.639 1.694 1.734 1.790 1.826 1.980 

8.14 

An - 2) = 1 1.375 1.467 1.528 1.571 1.604 1.650 1.681 1.815 
= 2 1.438 1.533 1.598 1.643 1.677 1.725 1.757 1.898 
= 3 1.560 1.625 1.671 1.706 1.755 1.788 1.931 
= 4 1.639 1.686 1.721 1.770 1.803 1.947 
= 5 1.694 1.729 1.779 1.812 1.956 
= 6 1.734 1.784 1.817 1.962 

= 7 1.788 1.821 1.966 

8 1.790 1.823 1.969 
=: 9 1.825 1.971 
= 10 1.826 1.973 
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Thus, the assumption of partially limited capacity supports only Predic¬ 
tion 1, but not Prediction 2 of the connectivity model. Does this mean that 
the connectivity model —by adhering to its specific predictions — is inca¬ 
pable of explaining the fan effect? 

In answering this question we refer to section 6.4. There we pointed to the 
findings of Ratcliff and McKoon (1981), who were able to show that 
spreading activation is probably so fast that it is irrelevant for predicting 
reaction times. As already emphasized, this result has led J. R. Anderson 
(1983a, p. 95) to use only the amount of activation but not activation time 
in predicting reaction times. 

It thus becomes clear that only Prediction 1 can be effectively used to 
estimate reaction times as a measure of the duration of search processes. 
The search process not only consists of the activation process, but also of an 
examination of the search results (Assumption D of the connectivity 
model). When focusing on the prediction of reaction times, the connectivity 
model is capable of giving a simple explanation of the positive as well as of 
the negative fan effect. If hierarchical structures are searched, then reaction 
time increases as the complexity of the memory network increases. In 
searching interconnected structures, on the other hand, reaction time 
decreases with increasing complexity of the network. 

Only one problem remains to be considered. According to the connec¬ 
tivity model, a search process terminates as soon as indirect activation flows 
back to that node where the search process originated. In a strictly 
hierarchical structure, activation can never spread back and thus, according 
to Assumption C, it would be impossible to terminate a search process. 
This, however, is true in the rather special case of a single hierarchical code 
being activated. As we know from Assumption A, the connectivity model 
considers only codes that agree with the definition of interconnectedness. 
But this does not mean that the structure connecting different codes must 
not be hierarchical. As Fig. 8.3 shows, interconnected codes might well be 
connected by a hierarchical structure. In order to demonstrate this idea, 
consider the strictly hierarchical network in Fig. 6.1. If in this network we 
would substitute each node by an interconnected code, the connectivity 
model would be capable of explaining the spread of the search processes 
starting at “park” and “firefighter.” Given this type of structure and the 
assumption of a partially limited capacity of spreading activation, the 
connectivity model can easily explain the fan effect. More complex net¬ 
works containing interconnected as well as hierarchical coding structures 
are considered in chap. 10 together with the simulation program CONN1. 

Finally there is another interesting issue to be considered. There is no 
plausible reason to assume that the capacity of spreading activation is a 
constant quantity. Instead, the capacity of spreading activation might vary 
as a function of a variety of different variables, such as age, degree of 
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elaboration or interconnectedness, and even intelligence. With respect to 
memory performance, we do know that memory capacity varies consider¬ 
ably between subjects. But why should similar considerations not also apply 
to processing capacity? There also might be a relationship between these 
two types of capacity terms in the sense that spreading activation capacity 
increases with memory capacity. Because we referred exclusively to As¬ 
sumption A and LTM codes, it makes sense to retain the assumption of 
unlimited capacity within the framework of the connectivity model. Fact 
retrieval tasks, which are dealt within the framework of ACT and ACT*, 
may not be considered pure LTM tasks (Klimesch, Schimke, & Ladurner, 
1988), and it therefore appears appropriate in this case to accept the 
assumption of limited capacity. 

8.4.2. ACT* and the Predictions of the 
Connectivity Model 

As compared to ACT, the more recent version of ACT* (J. R. Anderson, 
1983a, 1983c) exhibits three fundamental modifications. The first modifi¬ 
cation refers to the assumption of reverberating activation, the second to a 
continuous spreading activation, and the third to the assumption of an 
extremely high activation speed of less than 1 ms per network link. In sharp 
contrast to this, in ACT activation could only spread in one direction and 
only in a discontinuous way at a very slow speed of approximately 50-100 
ms per link (J. R. Anderson & Pirolli, 1984). The central assumption of a 
limited spreading activation capacity, however, was adopted by ACT* 
without any modifications. 

Because reverberating activation strengthens the amount of activation 
each node receives, the question arises whether ACT* is capable of 
predicting that indirect activation / increases in interconnected structures. 
Anderson did not confront this problem. He was able to show that an 
increasing number of converging links leads to an increase in activation at 
those particular nodes (J. R. Anderson 1983c, p. 286). However, it still 
remains an open question whether or not more complex networks can in 
general be activated faster than less complex ones. 

In an attempt to answer this question, we apply the processing assump¬ 
tions of ACT* to interconnected structures. J. R. Anderson (1983c) showed 
that this assumptions can be described in terms of simultaneous linear 
equation systems, showing the following general form: 



THE CAPACITY OF SPREADING ACTIVATION 105 

a(l) = £(2)la(2) 4-.k(ri)\a(ri) + A 

a(i) = £(l)la(l) +.k{ri)\a{n) 

a(ri) = £(l)lo(l) +.k(n - 1)1 a{n - 1) 

Where A = the amount of activation of the source node, 
o(i) = the amount of activation of node i, 
n = the number of nodes, and 
£(i) = a structural coefficient, which must be calculated on 

the basis of the geometric properties of node i. 
1 = a dampening factor. Its value may lie between 0 and 1. 

As an example, let us calculate a( 1) to a(5) for the completely intercon¬ 
nected structure shown in Fig. 8.1. According to ACT*, we proceed from 
the following five equations: 

a( 1) = 0.251a(2) + 0.251a(3) + 0.251n(4) + 0.251a(5) + A 
a(2) = 0.251a(l) + 0.251a(3) + 0.251o(4) + 0.251o(5) 
a( 3) = 0.25kr(l) + 0.251a(2) + 0.251a(4) + 0.241a(5) 
a(4) = 0.251a(l) + 0.251o(2) + 0.251a(3) + 0.251a(5) 
a( 5) = 0.251o(l) + 0.251a(2) + 0.251c(3) + 0.251a(4) 

Coefficients A:(i) show a value of 0.25 or i because in a completely 
interconnected code with five nodes exactly four links lead from any of the 
five nodes. Due to the assumption of reverberating activation and the 
extremely high rate of spreading activation, all nodes are activated almost 
simultaneously. When assuming equal strengths for all links, the activation 
is simply divided by the number of links leading from a node. 

In order to solve the equation system, we not only require numerical 
values for &(i) but also for dampening factor 1. In most of his examples 
Anderson used a value of 0.8 (J. R. Anderson, 1983c, p. 266, 286). We thus 
adopt this value for our example. The last value to consider is A, which 
refers to the amount of activation the source node sends into the network. 
Table 8.3 lists the results found for the source node c(l) and the remaining 
a(2) - a(n) feature nodes in completely interconnected structures with 
different complexity and for two different values of 1. It should be noted 
that a large dampening factor 1 passes on more —not less —activation. In 
summarizing the results of Table 8.3, we find: 

1. Activation u(i) decreases as the complexity of the network in¬ 
creases. This holds true for any given node or dampening factor. 

2. The extent of this decrease is affected by the size of dampening 
factor 1: The larger the dampening factor, the greater the decrease 
in activation. 
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TABLE 8.3 

Activation at the Source Node a(1) and the Feature Nodes a(2).. . a(n), Cal¬ 

culated for two Loss Factors I 

Number of 

Nodes (n) 

/ = 0.8 / = 0.99 

a(l) a(2) . . . a(n) a(l) a(2) . . . a(n) 

4 1.84 1.05 25.54 24.79 

5 1.67 0.83 20.64 19.84 

6 1.55 0.69 17.36 16.53 

7 1.47 0.59 14.47 13.61 

8 1.41 0.51 13.21 12.33 

3. The larger the dampening factor, the more activity is passed on to 
the other nodes of the network. 

As already emphasized, according to ACT*, the speed with which the 
information stored in node i can be retrieved depends on activation strength 
o(i). It thus becomes clear that ACT* is not capable of supporting the 
predictions of the connectivity model. On the contrary, the predictions of 
both theories contradict each other. Once again we see that it is the 
assumption of the limited capacity of spreading activation — here reflected 
by the way £(i) is determined — that is responsible for the deceleration of 
spreading activation. 

Completely interconnected structures always accumulate more activation 
than partially interconnected structures. Therefore, it cannot be expected 
that the pattern of results, as shown in Table 8.3, will change for partially 
interconnected structures. For this reason we forego a discussion of 
partially interconnected structures. 

8.5 DELIMITING THE SPREAD OF ACTIVATION 
IN MEMORY 

Any memory theory is faced with a fundamental problem: Which assump¬ 
tions should be used to explain why spreading activation remains limited to 
the relevant parts of the network and does not ultimately continue to spread 
to the entire memory structure? The connectivity model attempts to solve 
this problem on the basis of those assumptions guaranteeing that a search 
process terminates as soon as indirect activation spreads back to one of the 
source nodes. 

We show in the following that even in a case in which the nodes of an 
interconnected code are connected to other interconnected codes, the 
activation process may be terminated as quickly as with isolated codes, that 
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is, codes not connected to any other codes. In order to prove this, consider 
the different ways in which two or more codes can be connected to each 
other. 

Keep in mind that any interconnected code must have only one source 
node. Furthermore, the feature nodes must be connected in a way that 
results in closed structures (section 8.3 and Fig. 8.2). When considering 
these restrictions, there are only two possibilities of connecting a code X 
with a code Z. They can be connected either by common components (Case 
1 of Fig. 8.6) or by additional links (Case 2 in Fig. 8.6). 

8.5.1 Case 1: Codes X and Z Share a Common 
Node xz 

Independently of whether or not the search process proceeds from X or Z, 
a common node xz can only be activated by the end of the first activation 
stage, that is, after l/a time units. Assume that the search process proceeds 
from x. Then, the first activation stage in code Z begins with a delay of l/a 
time units. In other words, activation in code Z lags behind that of code X 
by exactly one activation stage. Even before the second activation stage 
ends in code Z, code X has already completed the third stage and the search 

Case 1 Case 2 

FIG. 8.6. Four different ways a node z can be attached to a code X. 
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process is terminated. This must always be the case because the third 

activation stage is always faster than the second. Furthermore, we have to 

consider the fact that it is only the third activation stage that leads to a 

decrease in activation time (cf. the expressions l/[a 4- b(n - 2)] and 1 /[a 

+ bf(n - 2)] in Equations 8.4 and 8.5). Therefore, it is not possible for the 

spreading activation process in code Z to interfere with that of code X. 

8.5.2 Case 2: Codes X and Y Are Connected By 
an Additional Link 

If any node of X is linked to a node of Z and if the search process starts 

from x (Case 2 in Fig. 8.6), then activation can only pass on to the link 

connecting X and Z after time 1 /a has elapsed. If we assume then that the 

link leading to Z is activated in the amount c (where c may be smaller or 

equal to b), then Z is activated after 1 /a + 1/c time units. In the meantime, 

however, after time 1/a + \/b, the second activation stage ends in X and 

the third and fastest stage is triggered. In other words, in code Z the first 

activation stage begins during the initiation of the third and fastest 

activation stage in code X. Because the third activation stage is always the 

fastest, the search process is terminated, before Stage 2 in Z can be 

completed. 

The same considerations also apply in those cases in which more than one 

common component or link connect codes X and Z. Even in such cases, the 

termination criterion is not affected. The only requirement is that addi¬ 

tional links or common components must not change the geometric 

properties in a way that the definition of interconnected codes is contra¬ 

dicted. Because two codes may never have the same source node, in the 

second code spreading activation does not begin until the completion of 

Stage 1 in the first code. It is therefore not possible for spreading activation 

in the second code to interfere with that in the first code. 

Finally, consider those cases in which code X is linked to another node 

and not, as has been the case in previous examples, with another code. 

Here, we may distinguish between two possibilities. A node z can either be 

interconnected to code X, as in Case 3, or just linked with any given node 

of X, as in Case 4. 

8.5.3 Case 3: Node z Is Connected with Source 
Node x and At Least One of the n - 1 
Nodes of X 

According to the definition of interconnected structures, it follows that in 

this case node z is itself part of code X (Fig. 8.6, Case 3). 
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8.5.4 Case 4: Node z Is Connected with Any 
Given Node of Code X 

Because the connectivity model does not admit the assumption of reverber¬ 

ating activity, an isolated node has no effect on the spread of indirect 
activation (Fig. 8.6, Case 4). 

These considerations have led to an important discovery. For now it can 

be seen that the connectivity model does not require a dampening function 

in order to guide the activation process toward the relevant parts of the 

network. In contrast to this, all network models (J. R. Anderson, 1976, 

1983a, 1983b, 1983c; Collins & E. F. Loftus, 1975; Dell, 1986) assume that 

the amount of activation decreases as the number of activated links 

increases. According to ACT and ACT*, spreading activation decreases as 

an exponential function (cf. the review in J. R. Anderson & Pirolli, 1984). 

As a result of the assumption of a dampened spreading activation, 

information relevant to the search process must be located very near the 

source node. If, however, the respective network parts are located far away 

from the source node, there is a danger of not finding the relevant 
sought-after information. 

8.5.5 Delimiting Spreading Activation By Inhibition 
and Preactivation 

In all previous considerations we proceeded from the fact that at the 

beginning of the search process all the nodes and links of a network are in 

a neutral state of “zero” activation (Assumption 7). If, however, we assume 

that certain network parts are inhibited or preactivated, then the activation 

process would comprise entirely different parts of a network. 

The activation state of a network at the beginning of a search process can 

be either neutral, inhibiting, or activating. It is neutral if the nodes and/or 

links are activated with zero; it is inhibiting if these show negative values; 

and it is activating if they already show positive values. This latter case is 

known as preactivation. Inhibited network parts decelerate or stop the 

process of spreading activation. In contrast to this, spreading activation is 

attracted to those network parts that are preactivated. 

Network theories are unfairly criticized for the way in which information 

is stored. It is said to be too rigidly determined by geometric properties. 

Furthermore, these properties can only be changed by learning processes 

and, as a result of this, only relatively slowly. However, this objection 

completely ignores the fact that inhibition and preactivation processes can, 

in a functional sense, cause an abrupt change in the geometric properties of 

the network. 
A dampening function has a decisively negative effect on inhibition and 
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preactivation: The sooner spreading activation is diminished, the less it can 

be influenced by inhibition and preactivation processes. The application of 

these concepts is therefore only appropriate within the confines of those 

network theories that do not proceed from a dampened spreading activa¬ 

tion. The concepts of inhibition and preactivation therefore increase the 

applicability of the connectivity model, though they only have a small effect 

on the explanatory power of ACT and ACT*. 

8.6 THE DETECTION OF COMMON PATHWAYS BETWEEN 
DIFFERENT NETWORK PARTS 

Almost all network theories assume that the search process emanates from 

at least two source nodes and aims at the detection of convergent activation 

meeting on common pathways. Up to now, we have only discussed the 

simple case of activating a single code. But the connectivity model can just 

as easily explain how a common pathway can be found between two or 

more codes. Depending on whether or not the sought-after codes share 

common components, we have to distinguish between two different cases, 

which are discussed in the following sections. 

8.6.1 Case 1: Two Codes X and Y Share Common 
Components 

If two codes X and Y have common components and if the search process 

begins simultaneously at both source nodes x and y, then —because of 

Assumption 7 (section 8.3.3) —the two activation processes will meet 

simultaneously at the common node(s). Let the activation emanating from 

x be o(x) and that coming from y be a(y). According to Assumption 3, a(x) 

and o(y) sum up at the common node(s), yielding a value of 2a. 

The following discussion refers to the example depicted in Fig. 8.7, which 

shows two codes X and Y sharing a common node xy. 

In the first activation stage (section 8.3.4.1) all nodes, with the exception 

of the common node xy, are activated by an amount equal to a. The 

common node receives twice that activation, which equals 2a. Activation 

processes originating at different source nodes meet at the common node xy 

and sum up. This is known as preactivation (section 8.2.2; Assumption B, 

last paragraph) as opposed to indirect activation. 

The term preactivation refers to additional activation stemming from 

another activation process. It does not necessarily imply that one of the 

activation processes arrives earlier. If they meet at the same time, as is the 

case in our example, the resulting effect is the same as in the case in which 

preactivation arrived earlier but within a critical time span t{k) (Assumption 
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FIG. 8.7. Two codes X and Y share a common node xy. The search process starts in 
STM and simultaneously activates the two source nodes x and y. The dotted line 
symbolizes the transition between STM and LTM. 

2 in section 8.3.3). Thus, within this critical time span the exact time of 

arrival of preactivation is irrelevant. For this reason —and in the interest of 

simplifying the terminology —we also call a simultaneous convergence of 

activations “preactivation,” providing they originated at different source 

nodes. 

At the beginning of the second activation stage, no activation can flow 

back to either of the two source nodes (Assumption 5). That is why 

activation —as in the examples discussed in section 8.3.1 — flows on to other 

corresponding nodes in networks X and Y. Thus, the rejection of reverber¬ 

ating activation (Assumption 5) prevents activation from flowing along the 

geometrically shortest pathway between the two codes X and Y (i.e., 

directly along the links from xy to x and y). It is not until the beginning of 

the third stage that indirect activation flowing back to one of the source 

nodes triggers the termination of the search process. 

During the second activation stage the common node is not only 

indirectly activated by the n — 2 nodes of code X, but also by those of code 

Y. Let n(x) be the number of nodes of X and n(y) be the number of nodes 
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of Y. Then, at the end of the second stage, the amount of indirect activation 

of the common and already preactivated node xy is: 

7/?(xy) = 2a + &[/j(x) - 2] 4- 7>[/?(y) - 2]. (8.15) 

Ip denotes indirect activation 7, strengthened by preactivation p. Equation 

8.15 holds for completely interconnected codes, but by substituting f(n — 2) 

it can easily be modified for partially interconnected codes. 

In the third stage, 7/?(xy) flows back to the source nodes of X as well as 

Y and there is added to that activation arriving from the remaining nodes of 

the network. It should be noted that at the beginning of the third stage the 

nodes of X and Y are —due to the preactivation of common node xy — 

activated to different extents. Because node xy, in comparison to all other 

nodes, exhibits by far the highest amount of activation, its activation will be 

the first to arrive at the source nodes. According to Assumption C, the 

search process would terminate before the activation of all of the other 

nodes arrives at the source nodes. Thus, the activation of weaker nodes 

arriving later would no longer be of any importance. 

Assumption D, however, draws explicit attention to the fact that the 

entire amount of indirect activation is not only an important indicator of 

the amount of positive evidence the search process yields, but also the only 

factor determining the speed of further processing the search result. 

Consequently, there is little point in retaining Assumption C in its original 

form. Assumption C must thus be modified to the extent that it no longer 

contradicts Assumption D. 

In trying to solve this problem, we must first consider the question of how 

a common pathway can be detected between X and Y. Thereby we 

determine a criterion that enables not only a termination of the search 

process, but also a clear evaluation of its results. Assume that the search 

process continues to the point where indirect activation 7, flowing back to 

one of the source nodes, exceeds the amount that would be expected in the 

“standard case” s, in which no common pathway and, therefore, no 

preactivation exists. This amount of indirect activation flowing back to 

source nodes x and y is denoted by 7s(x) and 7s(y), respectively. In contrast 

to this, indirect activation 7, strengthened by preactivation p and accumu¬ 

lating at the end of stage three at source nodes x and y, is denoted by Ip(x) 
and Ip(y), respectively. The termination criterion now refers to the com¬ 

parison of the amount of indirect activation 7 of a current search process 

with the standard case Is. 
Assume that the standard values 7s(x) and 7s(y) are stored at the source 

nodes. The result of the search process can then be checked at any source 

node by comparing 7 with Is. If 7 exceeds the standard case Is, the result is 

positive. If, however, this value is not exceeded, then the result of the search 
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process is negative. We can determine a positive result according to 
Equation 8.16: 

I = Ip > Is. (8.16) 

We arrive at a negative result, on the other hand, if the amount of indirect 
activation equals the standard case: 

I = Is. (8.17) 

The termination criterion becomes effective as soon as it is met by one of 
the two source nodes. 

Ip is in any case larger than Is and, therefore, operates to speed up the 

third activation stage (Equations 8.4 and 8.5). It thus follows that two codes 

with one or more common nodes not only cause more indirect activation 

but can be searched faster than a similar, but isolated, code. For the same 

reasons, a negative search result causes less indirect activation and lasts 

longer than a positive one. 

The two basic predictions of the connectivity model—/increases with the 

number of nodes and t(I) decreases with the number of nodes — are entirely 

supported in this case: The greater the number of nodes that codes X and 

Y comprise, the more indirect activation flows back to the source node and 

the faster a search process is terminated. 

The explanation offered this far is not only based on Assumptions 1-7 of 

section 8.3, but also on two new assumptions that can be regarded as an 

extension of Assumption C. The first new assumption refers to the 

beginning of the search process, the second to the type of termination 

criterion. These assumptions explain how common pathways between 

different codes are detected. 

Assumption Cl: If two or more codes are being searched, then the search 

process begins at the corresponding source nodes at the same time and with 

the same activation strength. 

Assumption C2: The termination criterion depends on the goal of the 

search process. If common pathways are to be found, then the search 

process will be terminated with a positive result, if activation /, flowing 

back to the source node, exceeds indirect activation Is, which would have 

originated in a standard case, that is, in the absence of preactivation. If / 

does not exceed Is (Equations 8.16 and 8.17), the search process terminates 

with a negative result. The termination criterion becomes effective as soon 

as it is reached by one of the source nodes. 

In summarizing our findings, we have determined four factors that 

influence the amount of indirect activation and the speed of the search 

process. Three of these factors refer to search processes with a positive 
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result. The more components (a) code X and (b) code Y comprise, and (c) 

the more common components they share, the more indirect activation will 

accumulate at the source nodes and the faster the search process will take 

place. For a search process with a negative result, on the other hand, only 

the number of nodes of that code that is first to reach the termination 

criterion is of importance. Thus, search processes with a negative result are 

only influenced by one single factor, namely, (d) the number of components 

of the code that comprises the most components. 
If we compare search processes with positive and those with negative 

results, the following additional prediction can be considered: (e) Because 

preactivation is absent in a search process with a negative result, the search 

time will be longer than one with a positive result. 

8.6.2 Case 2: Two Codes X and Y Do Not Share 
Common Components but Are Connected Via 
Other Codes 

In the following discussion we refer to the example illustrated in Fig. 8.8. 

Here we see two different codes (code X and code Y) with source nodes x 

and y, which are connected to each other by two other codes (code W and 

Z). It is the goal of the search process to determine whether or not codes X 
and Y are connected to each other by a common pathway. 

According to Assumption Cl, the search processes start out simulta¬ 

neously from x and y. Because of Assumption 7 the two activation processes 

meet on the link between nodes w(2) and z(2). It should be noted that the 

search process coming from x finds node z(2) already preactivated. Simi¬ 

larly, the activation process coming from y finds node w(2) preactivated. 

Depending on the speed of the search process and on the length of t(k), up 

from this point other nodes lying in the path of the search process may be 

preactivated. Thus, preactivation not only helps to speed up but also to 

guide the search process along the common path. 

Let ap(xi) be that amount of activation a, which stems from y and at time 

/ arrives in the form of preactivated activation ap at source node x. That 

activation coming from x and arriving at node y at time j is denoted ap(yj). 

Nodes x and y are not only activated by Is, but in addition also receive 

activation ap from the source node of the opposite side of the common 

path. The sum of both activations Is and ap is denoted by Ip. Therefore: 

Ip(x) = Is(x) + apixi) and Ip{y) = Is(y) + ap (yj). Of those activations 

ap(xi) and ap(yj) the one with the highest amount will be the first to reach 

the corresponding source node. According to Equation 8.16: The faster of 

the two activations is responsible for terminating the search process. 

The most important difference between Case 1 and Case 2 concerns the 

fact that activation ap, which is crucial in the evaluation of the termination 
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FIG. 8.8. A network consisting of 4 interconnected codes (X, W, Z, and Y). Due to 
processing Assumption 7, the activations spreading from x and y meet at the middle of 
the link w(2), z(2). 

criterion, can arrive later than Is. This shows that in Case 2, search times 

will be longer than those in Case 1 — independently of whether or not there 

is a positive result. Let us take a closer look at the process of spreading 

activation in order to better understand the consequences of this result. 

At the end of the first activation stage all X and Y nodes are activated. At 

the beginning of the second stage, activation not only flows to all n(x) - 2 

and n(y) - 2 nodes, but likewise to nodes w(l) and z(l). In other words, in 

the second stage the activation process already goes beyond codes X and Y. 

Here we can observe another important difference between Cases 1 and 2: 

In contrast to Case 1, Assumption 5 does not prevent activation from 

flowing along the geometrically shortest route (see the double links in Fig. 

8.8) between the two source nodes x and y. 

In the third stage, indirect activation Zs(x) and Is(y) flows back to source 

nodes x and y. In networks belonging to Case 2 the two codes X and Y must 

be connected by at least one other code. Thus, the shortest pathway between 

x and y is at least three links long. If the common pathway is more than 

three links long, the third activation stage of code x and y will have always 

been finished before activation ap arrives at the corresponding source node. 
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This shows that reaching the termination criterion (according to Equation 

8.16) in structures belonging to Case 2 will usually require more time than 

in structures belonging to Case 1. The additional time needed here depends 

not only on the length of the common pathway, but among other factors, 

also on the effectiveness of preactivation. Generally we should expect that 

the longer the common pathway, the more time it will take to reach the 

termination criterion. However, depending on how intensively intercon¬ 

nected the common pathway is, preactivation will be an important factor 

speeding up the search process flowing on the common pathway. 

The delayed arrival of preactivation raises the question of how to 

differentiate between a negative search result belonging to Case 1 and a 

positive one belonging to Case 2. Which criterion should be used in order to 

avoid mistakingly terminating the search process before a positive result 

(belonging to Case 2) can come about? In attempting to answer this 

question, we must first determine the extent to which a search process can 

be accelerated. In doing so, we notice that, apart from the length of the 

common path and the amount of preactivation, there are other powerful 

factors that contribute to an acceleration of the search process. The 

geometry of codes W and Z lying on the common pathway, as well as the 

second activation stage of codes X and Y make a considerable contribution 

to the quicker activation of the common pathway. 

8.6.2.1 Preactivation: The Mutual Strengthening of Both Search Pro¬ 

cesses. In the network of Fig. 8.8 both activation processes meet in the 

middle of the link connecting nodes w(2) and z(2). If, in order to simplify 

matters, we assume that no dampening function is effective, then the 

strength of each of the two activation processes proceeding on the common 

pathway and meeting in the middle of the link between w(2) and z(2) is 

equal to a. Beyond that point, each activation process finds node w(2) and 

z(2) already activated with amount a. Here, activation sums up to an 

amount equal to 2a. Thus far, we have only considered activation of the 

first activation stage. However, as is demonstrated later, the value of 2a 

arrived at here will increase by a factor of 5, if we consider the second 

activation stage of code X and Y, which will reach nodes w(2) and z(2) even 

earlier than the the first stage. 

If the subsequent nodes lying in the same direction have not yet lost their 

activation (Assumption 2), there will be an additional strengthening of the 

search processes at nodes w(l) and z(l), respectively. Any further strength¬ 

ening depends not only on the length of the critical time interval f(k) 

(Assumption 2), but above all on the way indirect activation spreads within 
codes W and Z. 

8.6.2.2 The Effect of Codes W and Z Lying on the Common Pathway. 

In our example, indirect activation spreading within codes Z and W (see the 
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paths going via w(3) and w(4)) leads to an additional strengthening of 

preactivation. By the time the activation process coming from x reaches z(2) 

it has passed through four links. The activation process coming from y but 

leading over z(3) has passed through just as many links. That is why both 

activation processes meet at node z(2), with the result of further strength¬ 

ening the activation process coming from x. The same happens to that 

activation process coming from y, which at node w(2) is further strength¬ 

ened by activation coming from x and leading over nodes w(3) and w(4). 

Thus activation equal to 4a accumulates at node w(2), which is activated by 

x, y, w(3), and w(4), each with amount a. In contrast to this, only activation 

equal to 3a accumulates at node z(2). Code W, which is richer in 

components, therefore contributes more to the acceleration of the search 

process than code Z, which contains fewer components. 

Here too, we have to emphasize that only the effects of the first activation 

stage were taken into account. The strengthening effect of W and Z, 

however, continues to increase if the second activation stage is considered. 

As a rule, we see that those codes lying on the common pathway can 

significantly increase the speed of spreading activation. The extent of this 

acceleration effect is all the greater, the more components are exhibited by 

the codes lying on the common pathway. This effect is quite plausible if 

one considers that codes rich in information (i.e., codes with many 

components) increase the importance of a common pathway: The more 

information a common pathway represents, the more activation flows back 

to at least one of the source nodes and the higher the amount of 

preactivated indirect activation Ip(x) and Ip(y). The strengthening effect of 

these codes lying in between also enables very long pathways to be searched 

very quickly. 

8.6.23 The Effect of the Second Activation Stage of Codes X and Y. 

The amount of Ip(x) and Ip{y) is positively influenced not only by the 

complexity of codes lying between them, but also by the complexity of 

codes X and Y. In considering the second activation stage of X and Y, this 

effect becomes even more important. The reason being that in the second 
activation stage the common pathway receives considerably more activation 

than in the first stage. Now, instead of a—as in the first stage — activation 

equals a -I- b(n - 2) or a + bf(n - 2) (Equations 8.2 and 8.3). One can 

therefore expect that activity of the second stage can catch up with that of 

the first stage. In our example this applies to both activation processes 

coming from x and y. Activation of the first stage reaches node w(2) or z(2) 

after 1/a + 1/a + 1/a = 3/a time units. That of the second stage reaches 

nodes w(2) and z(2) after 1/a + 1/b + 2[l/(a + 2b)] time units. Assume 

that a equals b. Then for the second stage we arrive at: 2/a + 2/3a = 8/3a 

= 2.61/a. As this amount is smaller than 3/a, we can see that the second 
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activation coming from X and Y has already caught up with the first at 

nodes w(2) and z(2). If nodes w(l) and z(l) are still activated by amount a 

from the first stage (Assumption 2), then activation of Stage 2 reaches 

nodes w(2) and z(2) even sooner, after 2/a + 1/3a + 1/4a = 2.58 time 

units. 
When arriving at nodes w(l) and z(l), activation of the second stage 

shows an amount of 3a. By this time, activation of the first stage 1 has not 

yet reached node w(2) or z(2). It can thus be assumed that nodes w(l) and 

z(l) are still activated by amount a, which adds up with the second stage, 

resulting in a total of 4a. In the first stage, nodes w(2) and z(2) are activated 

almost simultaneously with amount a, and in the second stage with amount 

Aa. The activations of w(2) and z(2) therefore amount to 5a after a total of 

3/a time units. Because both activation processes meet and cross on the link 

between w(2) and z(2), the amount of activation of w(2) and z(2) increases 

still further —due to preactivation — to a value of 10a. In addition, one must 

consider the strengthening effect of that activation that travels over w(2), 

w(3), and z(3) and arrives at node w(2) and z(2). 

These considerations confirm the predictions of the connectivity model. 

Because the number of components of X and Y increase the strength of 

activation in the second stage, the speed of the search process will increase, 

the more components the two codes X and Y comprise. 

Here, in contrast to all of the previously discussed examples, it is 

impossible to give a generally valid quantitative prediction about the arrival 

time of preactivation ap(xf) and apiyj). We have been able to show, 

however, that the arrival time of preactivation is not only dependent on the 

length of the common pathway. The three factors of spreading activation 

described earlier —the mutual strengthening of both search processes, the 

influence of codes lying in between, and the influence of the second 

activation stage of X and Y —all lead to a massive acceleration of the 

activation of the common pathway. However, it is the exact geometry of 

the network that determines the exact time of arrival of ap(xi) and ap(yj). 

As we have been unable to find a general rule governing the time of 

arrival of ap(xi) and apiyj), the question concerning the differentiation 

between a positive result belonging to Case 2 and a negative result belonging 

to Case 1 has remained unanswered. In what follows, we attempt to solve 
this problem, which we call “Problem 1.” 

8.6.2.4 Problem 1: On Differentiating Between a Positive Result of Case 

2 and a Negative Result of Case 1. If we could know in advance how 

difficult a memory search will be, we would easily be able to distuingish 

between Case 1 and Case 2. However, there would be little point in looking 

for an exact criterion with which to estimate the level of difficulty. For this, 

one would in advance need that information about the common pathway 
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that the search process aims to determine. But instead of an exact criterion, 

it is possible to define a rough criterion that allows us to distinguish between 

a simple and a complex search process. Although even this rough criterion 

will not be available at the very beginning, it will reveal itself during the 

course of the search process. 

We now want to show that, as soon as the third activation stage in the 

most complex code X and Y is finished, a rough estimate is at hand. In 

order to make this idea plausible, reconsider the results of Case 1: There we 

found that Ip(x) and Ip(y) accumulate faster at the respective source node 

than Is(x) and Is(y). If two codes are not connected by common compo¬ 

nents, then it is clear that at the time of arrival of Is(x) and Is(y) a positive 

answer will never be obtained. If, however, common nodes exist, then — 

because of the strengthening effect of preactivation — indirect activation will 

arrive much faster. At the moment when Is of the code richest in 

components arrives at the corresponding source node, it is clear that code X 

and Y do not share common components. If, in spite of this negative result, 

a common pathway should be found, a complex search process must be 

initiated. It is crucial here to remember that whether or not the termination 

criterion for a negative result is accepted depends on the goal of the search 

process (Assumption C2). If the goal consisted in finding common compo¬ 

nents, then the search process must be terminated as soon as Is accumulates 

at a source node (no response to Case 1). If, however, the search goal was 

defined in a relatively vague manner, then from the moment Is accumulates 

at a source node, a critical waiting period f(w/) must be fixed to allow for 

the arrival of ap(xi) and apiyj). In estimating t(w7), the definition of the 

search goal is used. The more vague the search goal, the longer f(w/) will be 

and conversely: The more exact the search goal, the shorter f(w7) will be. As 

Fig. 8.9 shows, by the time Is arrives it is clear whether or not a complex 

search must be initiated. 
There is, however, another and easier way of defining a criterion with 

which to distinguish between simple and complex search processes. This 

criterion is only applicable if we replace Assumption 1 with the assumption 

of partially limited capacity (section 8.4.1). Here we can make use of the 

fact that with the number v of links leading from a node activation o(j) of 

each link decreases (cf. Equation 8.10 and Table 8.1). This characteristic 

now enables us to state whether or not a code is isolated, that is, not 

connected with other components. If a code is isolated, then at point t(Is) 

indirect activation Is arrives at the source node. This is to be expected in a 

standard case, and is evidence for a negative answer in Case 1. But if at least 

one pathway is leading from this code, then —because of this additional 

branching—less activation / flows back to the source node in the third 

activation stage. If / falls short of the value of Is, then it is clear that we are 

involved in a complex search process. 
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FIG. 8.9. On the distinction between a simple and a complex search. 

This criterion is only mentioned in passing because we would have 

unneccessarily complicated all of our previous examples had we proceeded 

from the assumption of partially limited capacity. However, all of the 

conclusions considered thus far would have held true, if instead of 

Assumption 1 we had proceeded from the assumption of partially limited 

capacity. 

But let us return to the discussion of a complex search process. The 

attentive reader will not have failed to notice that we must also con¬ 

front another problem, which deals with the limitations of spreading 

activation. 
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8.6.2.5 Problem 2: How Can It Be Guaranteed That the Search Process 

Is Not Terminated By Indirect or Preactivation Stemming from Irrelevant 

Codes? In illustrating this problem, we assume that code X is not only 

connected with code Y lying on a common pathway, but also with another 

code V, which does not lie on the common pathway between X and Y (Fig. 

8.10). Indirect activation flowing back from code V is irrelevant for the 

discovery of the common pathway, but in spite of this it is capable of 

terminating the search process with a positive result. A similar consider¬ 

ation also applies to code U, which likewise does not lie on the common 

pathway and would mistakenly lead to an overvaluation of the relationship 

between X and Y. 

As complicated as Problem 2 may appear, solving it is rather easy. In 

doing so, we proceed from the fact that there are always three activation 

stages in interconnected codes. In taking advantage of this fact, we assume 

that from the moment Is arrives at source node x or y, spreading activation 

of all other codes is terminated by the end of the second activation stage. 

This new assumption (Assumption C3) can thus be stated as follows: 

\ / 
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\ / 

• ■ • s./ • - - • 
\ / 

s / 
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FIG. 8.10. An example illustrating Problem 2: Indirect activation flowing back from 
code V to x terminates the search process between x and y before a common pathway 

can be found. 
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Assumption C3: The criterion needed for the beginning of a complex 

search process belonging to Case 2 is the arrival of Is at one of the two 

source nodes x or y. Is is the larger of the two activations Is(x) and Is(y), and 

therefore the one that arrives soonest. From time t(Is) onward, spreading 

activation within all other codes is terminated at the end of the second 

activation stage. The effectiveness of Assumption C ends as soon as the 

search process has been terminated according to Equations 8.16 and 8.17. 

Assumption C3 prevents indirect activation from flowing back to that 

node of a code that was the first to be activated. Codes X and Y are not 

affected by Assumption C3, because they contain the source nodes from 

which the search process originated. As a result, the irrelevant effects of 

codes not lying on the common pathway are excluded (codes U and V in 

Fig. 8.10). 

In those codes lying on a common pathway one must distinguish between 

two types of connections: With the common pathway a code may share 

links (e.g., code W) or nodes (e.g., code Z in Fig. 8.10). It is an important 

consequence of Assumption C3 that codes sharing only one single node with 

the common pathway cannot influence the search process. For example, 

take code Z (in Fig. 8.10) and look at the activation process proceeding 

from y. Once activation has reached node z(2), the second activation stage 

of code X and Y has already been concluded, and the third and fastest stage 

begins. Indirect activation Is therefore arrives at source nodes x and y, 
before nodes z(l) and z(3) can be reached. Assumption C3 becomes 

effective at this point. As a result, while the second activation stage in code 

Z can be terminated, the third activation stage does not occur. Thus no 

indirect activation flows from node z(l) and z(3) to either the common 

pathway or to node z(2). 

In spite of Assumption C3, those codes sharing a link with the common 

pathway, however, do influence the search process and contribute to a 

strengthening of activation. Consider the following pathways within code 

W: Although activation flowing over nodes w(3) and w(4) is terminated at 

nodes w(l) and w(2), it contributes to a strengthening of the common 
pathway. 

Codes sharing a link (i.e., two nodes) with the common pathway 

contribute more to its importance than codes sharing only one node. It is 

therefore quite plausible that only those codes having at least two nodes 

lying on the common pathway contribute to a strengthening and therefore 
to a higher evaluation of the common pathway. 

Finally, it should be noted that Assumption C3 does not change any of 

the conclusions discussed in previous examples. Let us now turn to another 

problem. It arises out of Assumption 5, but plays only a subordinate role in 
its importance. 
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8.6.2.6 Problem 3: Assumption 5 May Briefly Interrupt the Search 

Process. If activation coming from source nodes x and y meets at one and 

the same node (node w(2) in Fig. 8.10; not to be confused with Fig. 8.8), 

then — because of Assumption 5 — activation can only spread in the opposite 

direction after time l/sh has elapsed. Because we had originally assumed 

that h equals 1, a delay of 1/s becomes effective. If we were to choose a 

value for h that is larger than 1 (e.g., 2), there no longer would be any delay 

if both activations met in the middle of the link (see the example in Fig. 8.8). 

In addition, it must be remembered that —in contrast to source activation — 

we have arrived at very high values for the activation of a common 

pathway. The more activation is transported along one link, the shorter will 

be the blockage time l/sh. It can therefore be seen that Assumption 5 does 

not lead to any significant delay of the search process. 

But Assumption 5 can also lead to a situation in which subsequent and 

faster activation will catch up with a slower activation flowing ahead on the 

common pathway. But it is just as likely that activations flowing equally 

fast will only meet if Assumption 5 delays that activation flowing ahead. 

Thus, Assumption 5 may also contribute to an accelerated activation of the 

common pathway. 

In summarizing our findings, we see that the predictions of the connec¬ 

tivity model also are supported by complex networks belonging to Case 2. 

The evaluation of the termination criterion for search processes with 

positive and negative outcomes is basically the same as in Case 1. Therefore, 

the predictions described for Case 1 are also applicable here. As we have 

seen, the number of components of X and Y is an important factor, which 

helps to speed up the search process. However, it may also be the case that 

a strongly interconnected common pathway can increase the amount of 

indirect activation to such an extent that the quantitative effect of X and Y 

is pushed into the background. 
If we compare the length of the search process of Case 1 and 2, then, in 

addition to Predictions (a)-(e), the following prediction can be stated: 

(f) Search times in Case 2 are, as a rule, longer than those in Case 1. 

This applies to search processes with a positive as well as with a 

negative result. 

8.6.3 Control Processes Monitoring the Spread of 
Activation: On the Validity of Assumption C3 

Traditional memory theories proceed from structural and processing as¬ 

sumptions. The connectivity model not only is based on these two types 

(Assumptions A and B 1-7), but also requires a third class of assumptions 
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(see all assumptions belonging to C) concerning the way activation pro¬ 

cesses are monitored. 
In answering the question of how Assumption C can be physically 

materialized or “implemented,” consider a simulation program or a neu¬ 

ronal network. Here we encounter explicitly and for the first time the notion 

that those memory structures that serve to store information are not 

capable —at least not without additional assumptions— to explain control 

or monitor processes. It is a consequence of Assumption C3 that some type 

of monitoring authority must exist for each code to hold information about 

the three stages of spreading activation. Because it is connected to all the 

components of a code, the source node is well suited to take over this task. 

In fulfilling this task, it is necessary for each of the n - 1 links that connect 

the source node with the remaining nodes to transport also the information 

that is relevant for the status of spreading activation. This information may 

be coded by another impulse series as that information referring to the 

activation process. But we may also assume that there are separate “control 

links” running parallel to the network links. 
With the help of the latter assumption, it is easy to explain the control of 

spreading activation that is monitored at the source node. At the time of its 

activation, each of the n — 1 nodes of a code sends a feedback signal via the 

control link back to the source node. When and how often each of the n - 

1 nodes was activated is registered at the source node. The effectiveness of 

Assumption C3 can then be explained as follows: As soon as one of the n 

- 1 nodes has sent a feedback signal for a second time, spreading activation 

in this code is interrupted. It is important to note that even if the source 

node itself is not activated first, but another of the n - 1 nodes, it can still 

fulfill its monitoring and control function. 

Our considerations so far have centered on the “local” representation of 

Assumption C3. This indeed suffices to explain why the spread of activation 

can be kept on the relevant points on the network: Any code that did not 

receive source activation stops the activation process after the second stage. 

But there are other tasks not yet considered. After the search process has 

terminated with a positive result, information must be available, with which 

intensity each of the codes was activated. This information will guide the 

retrieval process to access relevant parts of the common path. In order to 

guarantee this function, we must assume that the source nodes of all the 

codes are connected to a separate “control network.” As this network only 

connects all the source nodes, but not the nodes of a code, it will be much 

smaller than the memory network. 

We wish to emphasize the fact that the assumption of a control network 

should in no way be regarded as a special feature of the connectivity model. 

Each memory theory must confront the neglected question of how control 

processes are represented. For example, consider ACT and the experiments 



THE TRANSITION BETWEEN STM AND LTM 125 

discussed in section 6.1. In sentence verification tasks, the search goal 

consists in finding common nodes that are activated by at least two 

pathways. In the framework of our discussion, it is important to find out 

how this information is retrieved, and not just how it is sought after. No 

details regarding this are given in the representational assumptions under¬ 

lying ACT and ACT*. However, if we assume control networks that deliver 

a feedback concerning the amount of activation each code has received, 

then it is possible to directly access those parts of a network that have been 

activated rather intensively by a search process. 

In other words, the information discovered or activated by a search 

process must also be capable of being retrieved. For this to happen, 

however, the relevant place in a network must be able to be directly 

accessed. We return to this question in section 8.7.1, where we distinguish 

between general and specific search processes. 

8.7 THE TRANSITION BETWEEN STM AND LTM: LIMITED 
VERSUS UNLIMITED SPREADING ACTIVATION CAPACITY 

Search processes are conducted with a specific goal in mind and under 

conscious control. It may therefore be assumed that they originate in STM 

(Assumption Cl and the comparison of consciousness and memory pro¬ 

cesses in Klimesch, 1989). This, however, does not imply that all the 

information activated during the course of a search process is at the disposal 

of or is communicated to STM or consciousness. It is much more plausible 

to assume that a search process in LTM, though initiated in STM, takes 

place largely automatically and independently of STM (A. Baddeley, Lewis, 

Eldridge, & Thomson, 1984). Because of the large amount of information 

that is activated during the course of a search process in LTM, the capacity 

of STM would simply not suffice to transfer all of that information to 

STM. Thus, the amount of information a search process yields must 

correspond to the capacitative limits of STM. As a result, only an extremely 

small part of the information activated by the search process in LTM can be 

communicated to STM. 

Assume that the empirically well-supported concept of a limited STM 

capacity does not only apply to the amount of information stored in STM 

but also to the strength of activation processes. According to this idea, we 

have to assume that search processes starting out from STM are subject to 

capacity limitations. In section 8.4.1 we showed that the issue of limited 

capacity of spreading activation refers to the relation between input and 

output activation (Fig. 8.5). We emphasized that the processing assump¬ 

tions of ACT and ACT* correspond to the assumption of a limited capacity 

of search processes. It thus seems appropriate to apply the assumptions of 
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ACT or ACT* to STM, and that of the connectivity model to LTM (section 

8.4.1). 
It appears plausible to assume that there is a limited amount of activation 

A that is at the disposal of STM in order to start a search process in LTM. 

Depending on the number of source nodes to be accessed in LTM, the 

amount of activation each of the source nodes receives, decreases according 

to Equations 6.1 and 6.3. The example shown in Fig. 8.11 illustrates this 

transition from STM to LTM. 

Search processes in STM: 
Capacity is limited. 

Search processes in LTM: 
Capacity is not limited. 

FIG. 8.11. The amount of activation, A, to initiate a search is limited in STM. If the 
search starts at more than one access node in LTM, equal activation amounts, a, are 
allocated to each access node. In LTM, however, there are no capacity limitations which 
would further weaken the activation process. 

The assumption of a limited spreading activation capacity results in the 

prediction that the speed of a search process in STM decreases, the more 

source nodes need to be accessed. Because not only spreading activation but 

also storage capacity is limited in STM, it must be assumed that the number 

of access points to LTM is also limited. This idea relates to Assumption C, 

which states that the amount of indirect activation flowing back to each 

access point reveals the result of a search process. The more access points 

used, the more information is delivered in the result of the search process, 

and the more strain there will be on the capacity of STM. 

8.7.1 The Search Goal and the Limited Capacity 
of STM: General and Specific Search Processes 

We have emphasized that only part of that information activated during the 

course of a search process can be made available to STM. But which criteria 
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allow a selection of the relevant information? In answering this question we 

show that the extent to which the capacity of STM is strained depends on 
the type of search goal. 

All of our previous considerations have assumed that the result of a 

search process only gives information on whether or not the sought- 

after information is available. This information is reflected by the 

amount of indirect activation /. The aim of this kind of a “general” search 

process, therefore, does not consist in recalling the content of one or 

more codes, but only in establishing whether or not the sought-after 

information is stored and how quickly it can be recalled. General search 

processes pursue the goal of establishing whether the sought-after 

information is available in memory. Specific search processes, on the other 

hand, pursue the goal of retrieving the contents of the sought-after 
information. 

8.7.1.1 General Search Processes. A good example by which to 

explain the difference between general and specific search processes are 

semantic judgment tasks of the type “Is concept X (e.g., “eagle”) a Y 

(e.g., “bird”)?” In tasks of this kind it must be established whether a certain 

semantic relationship holds true for both concepts. This is a typical 

example of a general search process. Here, the extent of indirect activa¬ 

tion suffices (section 8.6 and Equations 8.16 and 8.17) in order to judge 

the search goal, that is, the validity of the superordinate relation between 

“eagle” and “bird.” The extent of indirect activation not only yields 

information on the validity of this relation, but also on the extent to 

which it is correct or incorrect. The question “Is an eagle a bird?” can be 

answered immediately, compared to the question “Is a penguin a bird?” 

Although, in a zoological sense, a penguin is also a bird, and the 

superordinate concept is correct in this case, “penguin” as opposed to 

“eagle” is an untypical example, and the superordinate relation is therefore 

not as relevant as it is for “eagle.” Although the amount of indirect 

activation suffices in order to give a positive evaluation of the sought-after 

relation (i.e., / = Ip > Is), it is much less pronounced in comparison to 

“eagle.” 
General search processes show two important characteristics. First, the 

search goal always consists of recalling a relation (semantic relation, 

similarity relation, location relation, time relation, etc.) assumed to exist 

between two or more codes. Second, the result of a search process can be 

judged with “yes” or “no.” Further examples of a general search process 

are: “Is a tree a living being?”, “Do persons X and Y resemble each 

other?”, “Is place X in state Y?”, “Did fact X take place within time Y?”, 

and so forth. 
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8.7.1.2 Specific Search Processes. A completely different kind of search 

process is used to determine why, for example, an eagle is a bird. Here the 

search goal consists not only in the discovery of common pathways, but also 

in the retrieval of that information represented by these common pathways 

or characteristics. According to the connectivity model, it can be assumed 

that the search goal is reached in two stages. The first stage, which is 

equivalent to a general search process, is used to test whether or not the 

sought-after information is available in memory. The amount of indirect 

activation will give information on this. In the second stage, which is the 

specific search process, relevant information is retrieved. Only then can it 

be established whether or not a certain fact is correct. 

How and according to which criteria is relevant information selected? 

The connectivity model assumes that those codes of the common pathway 

that have received the highest amount of activation represent the relevant 

information for that specific search process. Here, the crucial importance 

of a control network becomes evident. Direct access to relevant parts of the 

network requires a separate control network. 

Consider the question “Why is an eagle a bird?” Furthermore, assume 

that both concepts share common features or code components in memory 

(section 9.1). In doing so, we are concerned with a network belonging to 

Case 1 (section 8.6.1). During the first stage, that is, the general search 

process, all code components of both codes are activated. Because of their 

high degree of integration common nodes receive the highest amount of 

activation (Equation 8.15). The specific search process now accesses those 

components that have been most strongly activated. These are the common 

nodes for both codes. If we assume that “eagle” and “bird” share the two 

common components “has feathers” and “can fly,” then we have found the 

solution to the problem posed in our example. The specific search process 

directly accesses the most activated nodes, which are the common compo¬ 

nents, and the answer reads: “An eagle is a bird because it has feathers and 

can fly.” 

The explanation of specific and general search processes show that they 

both enable a very economical burden on the capacity of STM. In each case 

only an insignificantly small amount of information activated in LTM is 

transferred to STM. General search processes are even more economical 

than specific ones. Their search result consists only of one single measure¬ 

ment, and that is the amount of indirect activation. It is therefore to be 

expected that general search processes can be conducted and evaluated 

much faster than specific ones. This assumption is undoubtedly correct, as 

the examples discussed show. The question of whether or not an eagle is 

a bird can certainly be answered more quickly than the question of why 

an eagle is a bird. 
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8.8 THE IMPORTANCE OF PARAMETERS / AND t{l) 
FOR THE PREDICTION OF REACTION TIMES IN 

MEMORY EXPERIMENTS 

Before turning our attention to the predictions of the connectivity model in 

the next chapter, we must point to the following important facts: Ratcliff 

and McKoon’s (1981) results suggest that activation and search processes 

are conducted with such a high speed that they can hardly be used to predict 

reaction times in memory experiments. This result was also decisive in the 

revision of ACT and in the adoption of new assumptions by ACT*. It was 

assumed that the activation time per network link is so small as to be 

insignificant. 

The assumption of an extremely fast activation and search time, which is 

empirically well grounded, does not present a problem for the predictions of 

the connectivity model. Both parameters / (the amount of indirect activa¬ 

tion) and t(I) (the spreading speed of I) are highly correlated: The larger / 

is, the smaller the value of t(I). The extent of indirect activation / 

corresponds to the extent of positive evidence, which was discovered in a 

search process. The more positive evidence was found, the faster the result 

of the search process can be processed and the shorter reaction time 

(Assumption D). The amount of indirect activation can therefore be 

regarded as a primary factor in the prediction of reaction times. 

Despite the outstanding importance of I and the close correlation between 

/ and t(I), there are cases in which the values of t(I) alone can be decisive in 

the prediction of reaction times. The importance of t(I) becomes apparent, 

above all, if the termination criterion for a search process is the critical 

factor. A good example of this is Prediction d (section 8.6.1): A search 

process with a negative result will only be influenced by the number of 

components of the code richest in characteristics, because it exhibits the 

shorter search time t(Is) than the competing code, which comprises less 

components. Only an insignificant —and in the prediction of reaction times 

completely irrelevant—time difference between both values of t(Is) will 

decide on which of the source nodes, x or y, the search process will 

terminate and which amount of indirect activation — that of X or Y — should 

be used in predicting the reaction time. It is thus the search time t(Is) that 

is the critical factor in predicting reaction times. 
As this example shows, the explicit consideration of activation and 

search times is necessary in order to make exact predictions. Had 

assumptions on t(I) been lacking, we would not have been in a position to 

distinguish between the amounts of indirect activation stemming from 

codes X and Y. 
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Even if we are convinced that search times in memory are so short that 

they can have no influence on the prediction of reaction time, we should 

not make the mistake of omitting them from theoretical considerations. 

Memory theories that do so, for example ACT*, run the danger of not 

being able to distinguish between important determinants of reaction time. 



9A Connectivity Model for 
Semantic Processing 

The central issue confronting semantic memory research is the investigation 

of word meaning. As demonstrated in chap. 7, most models of word 

meaning proceed from two basic hypotheses: the decomposition hypothesis 

and the hypothesis of a hierarchical structure of semantic features. The first 

hypothesis assumes that the meaning of a word is not represented as a 

holistic unit but instead by semantic features. The second hypothesis 

specifies that the structure connecting the features of a concept is hierar¬ 

chical (McNamara & Sternberg, 1983). This view, described by Gentner 

(1981) as the complexity hypothesis, leads to the prediction that concepts 

with many features are processed more slowly than concepts with fewer 

features. However, when it turned out that the prediction of the complexity 

hypothesis could not be confirmed (Kintsch, 1974; Gentner, 1981; E. E. 

Smith & Medin, 1981), Kintsch (1980) was inclined to conclude that words 

are represented not by features but by holistic “supraword units” (Fodor et 

al., 1980). Thus, this controversy essentially refers to the question of 

whether or not concepts are represented by holistic or component codes. 

Kintsch (1980) argued that the failure of the complexity hypothesis 

contradicts the decomposition hypothesis. Though widely accepted (E. E. 

Smith & Medin, 1981, p. 43), this conclusion is by no means conclusive. The 

failure of the complexity hypothesis may just as easily speak for the 

invalidity of the assumption of a hierarchical semantic structure. 

Chapters 3 and 4 emphasize that the assumption of a holistic coding 

format results in a variety of contradictions. For this reason it would be 

wrong to abandon the decomposition hypothesis from the outset in favor of 

the assumption of holistic supraword units. All the results of our previous 
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discussion indicate that the assumption of a hierarchical coding format is 
not only incorrect, but can also be regarded as the most important cause for 
the contradictions cited earlier. 

Whereas the previous chapter dealt exclusively with the theoretical basis 
of the connectivity model, the aim of this chapter is to test its predictions. 
We want to show that the connectivity model enables a consistent interpre¬ 
tation of the results of semantic memory experiments. Semantic memory 
experiments are used because the representational assumptions (Assump¬ 
tion A and Assumption 1, section 8.3.3) of the connectivity model refer 
exclusively to the structure of LTM. The development of intensive inter¬ 
connections between different coding components (features) requires time. 
Thus, it can hardly be assumed that the representational assumptions of the 
connectivity model can also be applied to STM or nonpermanent memory 
systems (cf. the experimental paradigms on fact retrieval and the discussion 
in sections 8.4.1 and 8.7). As emphasized in chap. 5 and 7, pure LTM 
demands exist only in semantic memory experiments, but not in experi¬ 
ments on fact retrieval. It therefore seems obvious to use semantic memory 
experiments when examining the connectivity model. 

9.1 EVIDENCE FOR INTERCONNECTIONS BETWEEN 
SEMANTIC FEATURES 

The connectivity model for semantic processing assumes that the features of 
a concept form an interconnected structure that represents the meaning of 
a concept. From chap. 8 we know that the maximum possible number of 
interconnections between n nodes increases exponentially with increasing n. 
However, in considering this tremendous increase in interconnections one 
might be tempted to object that the strength of the interconnections 
decreases as the number of semantic features increases. If this was true, the 
degree of interconnectedness would not be positively correlated with the 
number of features, and the complexity of a code could not be considered 
a meaningful predictor of reaction time. This possible conjecture was tested 
in Experiment 1 of Kroll and Klimesch (1992). We measured the strength of 
individual interconnections by asking subjects to rate the strength of each of 
the connections between a concept and its features (reflecting the connec¬ 
tions between a concept node and its components) as well as the connections 
between all possible pairs of features. For a set of concepts, previous 
subjects had listed the features they felt were most characteristic and 
important (Klimesch, 1987). For this set of concepts, the actual number of 
features (variable: number of features, NOF) and the rated number of 
attributes (variable: number of attributes, NOA, from Toglia & Battig, 
1978) were available. The most important measures obtained from Exper- 
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iment 1 were the average rating values for the strength of connection 
between each concept and its features (variable: rated strength of concept- 
-feature connections, RCF) and the average ratings for the strength of 
connection between the features (variable: rated strength of feature-feature 
connections, RFF) of each concept. 

The results show that neither NOF nor NOA is significantly correlated 
with RCF. This indicates that the connection strength of a concept feature 
link does not vary with the complexity of a code. Most importantly, 
however, a highly significant and positive relationship was found between 
RFF and NOA (r = .50; n = 48) as well as RFF and NOF (r = .65; n = 
48). Thus, the strength of the interconnections between the features of a 
concept increases as the complexity of a code increases. When interpreting 
this result, we have to keep in mind that, according to the connectivity 
model, any feature node must be linked to the concept node and, therefore, 
the degree of interconnectedness is solely reflected by the network intercon¬ 
necting the features of a code. Thus, the strong positive correlation between 
the complexity of a concept and the strength of connections between the 
features provide good evidence for the assumption that features are indeed 
interconnected. 

9.2 THE REPRESENTATION OF WORD MEANING ON THE 
BASIS OF INTERCONNECTED STRUCTURES 

Apart from the question of how semantic information is represented in 
memory (cf. the review in Johnson-Laird, 1987), there appears to be general 
agreement regarding the following two assumptions of word coding (cf. 
the reviews in D. L. Nelson, 1979, and Klimesch, 1982a): 

• The semantic and graphemic-phonemic information of a word is 
represented in different memory systems that are functionally 
independent. Graphemic-phonemic information refers to the per¬ 
ceptual characteristics of a word in its function as a sign or symbol 
and will hereinafter be referred to as perceptual word code. 

• The semantic information of a word can be retrieved only after the 
perceptual word code has been accessed. 

These basic assumptions are derived from the simple fact that the 
perceptual word code does not reveal the meaning of the word. Conse¬ 
quently, the graphemic-phonemic information of a word represented in 
isolation must be completely encoded before the word meaning becomes 
accessible. This, however, holds true only if we control for processes of 
expectancy and priming, which result from the linguistic context in which a 
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word is usually embedded. The important conclusion, however, is that the 
semantic code of a word must reveal a specific access point in semantic 
memory. This specific access point is termed concept node. 

The meaning of a word is not represented by the concept node itself, but 
by the structure of semantic features to which the concept node gives access. 
The type, number, and structure of semantic features are therefore the 
crucial variables in the encoding of word meaning. Figure 9.1 illustrates the 
assumptions discussed thus far. It now becomes clear that concept nodes 
serve to access the meaning of a word in semantic memory and vice versa, 
word nodes serve as access nodes in the movement from semantic memory 
to the graphemic-phonemic network (see Adams, 1979, and G. D. Brown, 
1987, for a review of the different word coding models). When applying the 
connectivity model to the encoding of semantic information, the term 
source node becomes synonymous with concept node. 

Perceptual Graphemlc-phonetic 
network network 

N 

S 

FIG. 9.1. The meaning of a word becomes available only after a word is perceptually 
and lexicographically encoded. Word nodes and concept nodes (x) serve as access points 
in the transition from the graphemic-phonetic to the semantic network. 

9.2.1 In the Transition from One Memory System 
to Another, Component Codes Can Be Used as 
Holistic Units 

In contrasting holistic codes with component codes in chap. 3, we explicitly 
pointed out that only holistic, but not component codes, require specific 
access points or addresses. Are we then contradicting ourselves if we 
proceed from the assumption of specific access points? The answer is no, 
because we use the assumption of specific access points in order to explain 
the transition between two functionally different networks: the graphemic- 
phonemic and the semantic network. Activation spreading within semantic 
memory can activate any subset of components of a semantic code. There 
is no need to activate the concept node in order to get access to the 
components of that code. Consequently, the same also applies to the 

Semantic 
network 
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graphemic-phonemic network. Only the transition from one network to the 
other is guided by specific access points. In other words, Assumption A of 
the connectivity model (section 8.3) applies only within the semantic or 
graphemic-phonemic network and specifically to the codes stored in these 
networks, but not to the connections between both networks. 

These considerations allow us to make the following interesting conclu¬ 
sion: A component code can be functionally holistic if it is accessed from 
another storage network. If the semantic component code of a word is 
retrieved by the graphemic-phonemic network or by the perceptual word 
code, then the semantic code will exhibit functionally holistic characteris¬ 
tics, and the all-or-nothing principle described in section 3.4 will govern 
retrieval attempts. A good example of this are word-finding disturbances 
(such as in aphatic syndromes) or the related “tip-of-the-tongue” phenom¬ 
enon: A word cannot be recalled from memory at a particular point in time, 
even though its semantic information is available. At a later date, however, 
the sought-after word may suddenly and unexpectedly be available. But the 
findings of R. Brown and McNeill (1966) and other researchers (see A. S. 
Brown, 1991, for a more recent review) have also shown that in the event of 
a word-finding disturbance the first and final letter of the sought-after word 
may in all probability be guessed. The availability of single letters thus 
supports the assumption of component codes (see the argument in section 
3.5) but refers to the graphemic-phonemic code and not to the transition 
between the graphic-phonemic and the semantic network. Therefore, with 
respect to this transition we may apply the all-or-nothing principle that is 
characteristic for holistic codes: A sought-after word becomes available in 
an abrupt as opposed to a gradual manner. 

9.2.2 Semantic Features and Word Meaning 

When applying the connectivity model to semantic processing we assume 
that word meaning is not only represented by semantic features but also by 
the links and relations between them. The structure of the features is just as 
important as the features themselves. 

Those semantic features, on which the meaning of a word is based, are 
not seen as information components that are independent of each other. On 
the contrary, they refer to each other and form interconnected codes. This 
assumption is closely related to the notion that semantic features of natural 
concepts are co-related or will, in all probability, appear together (Malt & 
E. E. Smith, 1984; Medin & E. E. Smith, 1984; Rosch, 1978). Thus, for 
example, an animal that has feathers is in all probability capable of flying 
and will thus exhibit features like “wings,” “beak,” “feet,” “claws,” and so 
forth. The links of an interconnected code represent the relations between 
features. Therefore, a link between the features “wing” and “feather” 
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means that the wings of a bird, but not those of an airplane or insect, have 
feathers. 

What are semantic features? A variety of answers to this question have 
been put forward elsewhere (chap. 7). But whatever semantic features are, 
whether they consist of visual characteristics or abstract semantic primi¬ 
tives, they are definitely not verbal units. 

In order to demonstrate the significance of this conclusion, consider 
again the concept bird and the features “fly,” “feathers,” and “wings.” 
These so-called features are themselves concepts with a word node, a 
concept node, and a structure of features. If we were to assume that the 
concept nodes of “fly,” “feathers,” and “wings” are feature nodes of the 
concept bird, then we will inevitably have to accept that the features of a 
concept are verbal units. In this case the meaning of a word would no longer 
be represented by object-related features, but instead by other words (see 
the critique of traditional network theories by Johnson-Laird, Herrmann, & 
Chaffin, 1984). 

Likewise, the connectivity model prevents us —albeit for different rea¬ 
sons—from proceeding from this assumption. Section 8.5 demonstrates 
that different interconnected codes may in no way exhibit common source 
nodes. Consequently, the feature nodes of a code may not at the same time 
be concept nodes for other codes. 

An obvious solution to this problem is the assumption of an overlapping 
feature representation (Assumption I in section 9.2.4). For example, 
consider the hypothetical encoding structure in Fig. 9.2 for the concept 
“bird” and the features “fly,” “feathers,” and “wings.” 

The crucial idea here is that in the context of a certain concept every 
feature has a very special and specific meaning. Within the concept “bird,” 
“wing” has a very specific meaning that can best be represented by its special 
form and function. It now becomes clear that the feature “form of a wing” 
[f(wing)] cannot be equated with the concept “wing.” Furthermore and most 
importantly, f(wing) is a feature for both concepts “bird” and “wing.” 
Similar considerations apply to the feature “fly,” which likewise has a very 
specific meaning in this context and can in no way be equated with the 
concept “flight.” 

The notion of an overlapping feature representation is also consistent 
with the idea that features are not verbal units. The specific form of a wing, 
just as the specific type of flight of, for example, a bird, an airplane, or a 
helicopter, may be circumscribed verbally. However, they lack a verbal 
concept with which to describe the subject in a single word. We thus see that 
semantic features can only be circumscribed linguistically, whereas a 
concept can be expressed in one word. 

The assumption of an overlapping feature network, in which one or more 
concepts share the same feature, is in agreement with the connectivity 
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feather 

_ x BIRD 

FIG. 9.2. Semantic features are neither words nor concepts (shown in capital letters). 
Wing in the context of BIRD denotes a very specific form of a wing [f(wing)] which also 
is a feature of the concept WING. Although not shown here, the same holds true for the 
other features of BIRD, fly and feather. 

model. In section 8.6, for example, we made explicit reference to cases in 
which codes share common components. 

9.2.3 Word Meaning and Context 

The meaning of a word cannot be known without reference to its defined 
context (Fodor et al., 1980). Feature theories are therefore confronted with 
the following problem: How is it possible to define the meaning of a word 
while using a particular set of semantic features, if their number and 
structure varies as a result of different contexts? 

On the basis of the connectivity model, this question can be answered 
quite easily. Preactivation and inhibition (section 8.5.5) are processes 
capable of changing the meaning of a word without changing the geometry 
of the network. “Wings” in the context of “bird” has a different meaning 
when placed in the context of “airplane” or “insect.” The specific meaning 
of a word is a result of the context that triggers the activation of relevant 
and/or the inhibition of irrelevant features. If, for example, in a priming 
experiment, first “bird” and then “wing” is represented, it may be assumed 
that the features of the preactivated concept “wing” refer to the typical wing 
form of a bird, while at the same time the feature of the typical form of an 
airplane is being inhibited. Preactivation and inhibition guarantee the 
selection of a specific meaning at the expense of other possible meanings 
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and, therefore, prevent all aspects of meaning from entering consciousness 
at the same time. 

Iri good agreement with these suggestions, the results of priming exper¬ 
iments have shown that relevant features (relevant “primes”) generally lead 
to shorter reaction times than irrelevant ones (Tabossi & Johnson-Laird, 
1980; Tanenhaus & Lucas, 1987). The findings by Kroll and Klimesch 
(1992), outlined in section 9.7, also provide evidence for the specific 
effectiveness of preactivation. 

Johnson-Laird (1987) differentiated between three different context 
effects. The context allows: 

• the selection of ambiguous concepts with different meanings, 
• the specification of the meaning of a concept, and 
• the emphasis of particular aspects at the expense of other aspects. 

All three context effects may be explained within the framework of the 
connectivity model through preactivation and inhibition processes. This 
applies to the selection, specification, and rejection of irrelevant aspects of 
word meaning. 

9.2.4 Conceptual Hierarchies, Typicality, and 
Interconnected Structures 

The assumption of a hierarchical arrangement of concepts is empirically 
well supported (chap. 7). This not only holds true for verbal-semantic, but 
also for visual-semantic information processing (Hoffman & Zie/31er, 1986; 
Palmer, 1977). But how can a hierarchical structure be represented by 
interconnected codes? Is this a contradiction in itself? Is it necessary to 
assume that hierarchically structured information must also be represented 
hierarchically? In the following we show that this objection would be 
misleading and that interconnected codes are well capable of representing 
hierarchically structured information. 

The point of interest here is the way in which concepts of the same 
category but with a differring hierarchical status are connected to each 
other. Here category means a set of concepts subordinate to the superor¬ 
dinate concept denoting that category. When applying the connectivity 
model to conceptual hierarchies we proceed from the following assump¬ 
tions, which are based on the idea of an overlapping feature structure: 

Assumption I: The features typical for a category are those that the 
superordinate concept shares with its subordinate concepts. 

Assumption II: Each feature of a category is represented at only one 
particular place in the network. 
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The purpose of Assumption II is simply to avoid a redundant storage of 
semantic features. It is consistent with the general principle of the econom¬ 
ical use of storage capacity and is thus in no way specific to the connectivity 
model. The conclusions that can be derived from Assumption I are 
discussed in greater detail later. Prior to this, however, it may be helpful to 
take a closer look at the concept of typicality. 

9.2.4.1 Typicality, Basic Level Concepts, and Typical Features. The 
research on typicality is closely related to the research of Eleanor Rosch. In 
her view (e.g., the review in Rosch, 1978), typicality is a relation that is only 
valid within one and the same category. It refers to the degree with which 
a subordinate concept is a more or less characteristic example of the 
corresponding superordinate concept. 

In a broader sense, the typicality relation may be applied to all different 
types of categories as well as all different types of sub- and superordinate 
relations. In a narrower sense, however, typicality applies to a very specific 
level in the conceptual hierarchy, which was termed “basic concept level” 
(Rosch, et al., 1976) or “primary concept level” (Hoffmann, 1986). Basic 
level concepts and primary concepts (e.g., “car” or “bird” in contrast to 
“vehicle” or “living being”) are complex (i.e., have many semantic features) 
and comprise many subordinate concepts. They are located on the highest 
level in the conceptual hierarchy, that can still be described by sensory 
prototypes or schemas. For example, consider the typical shape of a car or 
a bird that can be used to summarize a great number of differing but similar 
objects (Rosch et al., 1976). The more a concept resembles its prototype, the 
more typical that concept is. 

Typical features represent the most important characteristics of a cate¬ 
gory, but they do not allow one to arrive at a strictly logical definition, 
stating whether or not a concept belongs to a certain category (see 
McCloskey & Glucksberg, 1978; Medin, Altom, & Murphy, 1984; as well as 
the reviews in Medin & E. E. Smith, 1984, and E. E. Smith & Medin, 1981). 
One of the most comprehensive definitions of typicality was given by Rosch 
and Mervis (1975). They demonstrated that the extent of typicality can be 
indicated by the number and frequency of those semantic features that 
occur in most concepts of that category. If in a feature-listing experiment 
the frequency with which each feature occurs in all other concepts of the 
same category is determined, and the sum of these frequencies is calculated 
for all of the features of a concept, the result is a good indicator of 
typicality. This measure will increase the more common and frequent 
features a concept contains. 

For example, take a hypothetical category consisting of four concepts 
and six different features (FI, F2 . . . F6). Furthermore, assume that one of 
the four concepts (Concept 4) comprises only two features (FI and F6); one 
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feature (FI) occurs in all other concepts, but the other feature (F6) is only 
confined to this concept and does not occur in any of the other concepts 
(Table 9.1). Thus, FI occurs four times whereas F6 occurs only once. The 
frequency sum for Concept 4 therefore amounts to 5. Using this measure — 
the frequency sum of the features of a concept —Rosch and Mervis (1975) 
coined the term family resemblance. They found a significant relationship 
between family resemblance and typicality (as measured by a rating scale). 
This result thus suggests that typicality is not a holistic prototype but may 
ultimately be described by a particular structure of semantic features. Those 
features that occur most frequently in the entire category determine the 
extent to which a concept may be regarded as typical. We can, therefore, 
denote those features that occur frequently in a category as typical features. 

The linear-additive structure underlying the measurement of family 
resemblance could mistakenly create the impression that typical features 
exist independently of each other (Armstrong, L. R. Gleitman, & H. 
Gleitman, 1983). Because the independence of features implies a hierar¬ 
chical structure, we would end up contradicting the representational 
assumptions of the connectivity model. (See the distinction made between 
independent cue and relational encoding models in section 9.2.5). However, 
in a series totaling seven experiments, Medin, Wattenmaker, and Hampson 
(1987) demonstrated that the measurement of family resemblance yields 
adequate results only if the relevant features are correlated. The authors 
therefore assume that typicality may be described by a structure of related 
features (Murphy & Medin, 1985). 

9.2.4.2 Typical Features and the Conceptual Hierarchy. Although 
Assumption I agrees in all essential aspects with the findings of Rosch, there 
is an important difference to be pointed out. Rosch’s approach only 
concerns that distribution of features assumed to exist between the subor¬ 
dinate concepts of a category. The conclusion to be derived from Assump¬ 
tion I, however, refers to the structure of superordinate concepts: The 
typical features of a category are at the same time the features of the 
superordinate concept denoting this category. 

TABLE 9.1 
The Measurement of Family Resemblance 

Concepts Feature Weights Family Resemblance 

Concept 1 FI (4) F2(2) F3(2) 8 

Concept 2 FI (4) F3(2) F4(l) 7 
Concept 3 FI (4) F2(2) F5(l) 7 

Concept 4 FI (4) F6(l) - 5 

Note: The numbers in parentheses refer to the frequency a feature occurs in the set of 

concepts; the sum of these frequencies gives the degree of family resemblance. 
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What do Rosch’s findings mean in the light of Assumptions I and II? 
Because typical features are those occuring most frequently in a category, 
and because each feature may only be represented in one place in the 
network, typical features must be intensively interconnected with many 
other features. Typical features therefore lead to an essentially stronger 
interconnection within the category than less typical features. Thus, typical 
features take on a special status, not only because they generally lead to a 
higher degree of interconnectedness but also because they serve as the most 
important connection between sub- and super ordinate concepts. 

The way in which a conceptual hierarchy can be represented by an 
interconnected structure is shown in Fig. 9.3. Here there are three intercon¬ 
nected codes, each belonging to one of three different conceptual levels 
that, according to Hoffmann (1986), can be denoted as sub-, middle-, and 
superordinate concept levels. The code for “animal” comprises two, the 

yellow feather 
• -• 

\> '/ 

M'/ 
X 

CANARY 

FIG. 9.3. An interconnected structure is capable of representing a conceptual 
hierarchy. The example shows four codes, a subordinate concept (canary), a middle 
level concept (bird) and a superordinate level concept (animal). Concept “wing” 
illustrates the difference between a feature [f(wing)] and a concept. The middle level 
concept which in our example is a basic level concept shares its features with the 
subordinate concept (Case 1 in section 8.6.1). The superordinate concept “animal,” 
however, is linked only by common pathways (Case 2 in section 8.6.2) with other 

concepts of the same category. 
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code for “bird” three, and the code for “canary” four components. Thus, 
the lower the hierarchical level of a concept, the more features it comprises. 
It should also be noted that common features exist only between “canary” 
and “bird” but not between “canary” and “animal” and not between “bird” 
and “animal,” because the features “feathers,” “wings,” and “fly” may be 
regarded as typical for the majority of concepts belonging to the middle- 
level concept “bird.” 

Because of Assumptions I and II, a subordinate concept like “canary” 
must, in our example, share the typical features of the middle-level concept. 
In contrast to subordinate concepts, however, the middle-level concept 
shows no specific features such as “yellow” for “canary.” The middle-level 
concept is defined exclusively by typical features. Because subordinate and 
middle-level concepts share common features in our example, the network 
structure assumed here corresponds to Case 1 in section 8.6.1, and the 
predictions outlined there are also applicable here. 

The importance of the basic concept level for typicality can also be 
demonstrated here. It becomes obvious if we consider the degree of 
abstraction and specificity of the features. “Wings,” “feathers,” and “fly” 
are highly specific features because they can be visualized easily. Although 
more abstract than the subordinate concept “canary,” the middle-level 
concept “bird” can still be visualized, but in a more abstract way and in the 
form of a prototype only. On the other hand, unlike in the case of “bird,” 
no common visual prototype exists for “animal,” which would agree in the 
same way with all other breeds of animal. When compared to those of 
subordinate concepts, the features of “animal” are abstract and nonspecific. 
This is a consequence of the conceptual hierarchy requiring that a superor¬ 
dinate concept must apply to a very large and heterogeneous number of 
subordinated concepts. Consider the superordinate concept feature “move.” 
It is abstract and unspecific, because it may denote many different forms of 
“movement” such as “creep,” “crawl,” “go,” and so forth, and not only 
“fly,” which is typical and specific for birds. It would, therefore, be wrong 
to assign “fly” to the super ordinate concept “animal.” 

As can be seen in the example outlined in Fig. 9.3, the superordinate 
concept does not share a single feature with the subordinate and middle- 
level concepts “canary” and “bird.” There is only one common pathway 
between the superordinate and subordinate concept level. This network, 
therefore, corresponds to Case 2 in section 8.6.2. Although similar predic¬ 
tions apply to Cases 1 and 2, it must be remembered that search times in 
Case 2 generally tend to be longer than those in Case 1 (Prediction f). 

Asumption I is only valid for Case 1 but not for Case 2. Whether or 
not typical features exist between the superordinate and subordinate 
concept level depends on the heterogeneity of the concepts of the category. 
In the case of very heterogeneous categories (e.g., animals), which comprise 
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very different middle-level concepts, it is necessary to proceed from 
relatively abstract superordinate concept features such as “move.” Thus, in 
this case of very heterogeneous categories the concept of typicality is 
meaningless. 

According to the connectivity model, the hierarchical status of a concept 
can therefore be indicated by three criteria: the number, structure, and type 
of its features. Apart from the special hierarchical status of basic concepts, 
the following general relationship can be suggested: The more abstract a 
concept is, the fewer features it will comprise and the more heterogeneous 
and therefore less interconnected its features will be. The level of the 
conceptual hierarchy not only determines the number of features but also 
the type of features: The higher the hierarchical status of a concept, the 
more abstract it will be and the fewer features it will comprise. 

Within the framework of the connectivity model, typicality can be 
explained by the structure of features that exists between sub- and superor¬ 
dinate concepts. Thus, typicality may not be considered as an additional 
characteristic of concepts, but instead as a result of its feature structure: 
Many common, that is, overlapping, features of a category lead to an 
intensely interconnected structure, which determines the “typical meaning” 
of this category. 

Basic concepts and typicality are thus closely related concepts. Previously 
we have emphasized that basic concepts share many features with their 
subordinate concepts. These overlapping features form an interconnected 
network that at the same time determines the meaning and the typical 
structure of basic concepts. Typicality and the structure of basic concepts 
both refer to the different aspects of the central tendency of a category’s 
meaning (Rosch et al. 1976; Whitney & Kellas, 1984; and albeit with certain 
reservations also Barsalou, 1985; Chumbley 1986; Medin et al., 1984). 
Whereas basic concept refers to a superordinate concept with a high number 
of intensely interconnected features, typicality refers to the structure of 
overlapping features that connects a superordinate concept with its subor¬ 
dinate concepts. The greater the degree of overlap, the more typical the 
subordinate concept is in relation to its superordinate concept. 

Consequently, typicality is best applied to those categories that actually 
show a high degree of feature overlap. It therefore makes sense to speak of 
an “eagle” as a typical “bird.” But it hardly makes any sense to denote an 
eagle as a typical animal or a typical living being. Is there anything like a 
“typical animal” or even a “typical living being?” The more abstract a 
category is, the less sense it makes to speak of typical concepts. 

The result of our discussion can be summarized as follows: The inter¬ 
connected structure of overlapping features is the central concept used in 
explaining typicality, conceptual hierarchy, and the structure of basic 

concepts. 
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9.2.5 The Connectivity Model and Other 
Categorization Models 

The connectivity model explains semantic relatedness in terms of overlap¬ 
ping features. Previous sections have shown that Rosch’s prototype corre¬ 
sponds also to this structure of overlapping features. According to the 
connectivity model, categorization processes can be described as search 
processes emanating from two codes (chap. 8): If common features exist, 
then a concept may be quickly recognized as belonging to a specific 
category. All the predictions made for Case 1 in section 8.6 (i.e., two codes 
share common features) and Case 2 (i.e., two codes are only connected by 
a common pathway) can be applied to categorization processes. Sections 9.6 
and 9.7 deal with these predictions in greater detail. 

Many other categorization models focus on the way features can be used 
in classifying concepts. Thus the question arises as to how the connectivity 
model differs with respect to conventional theories. When answering this 
question, we should keep in mind that the connectivity model was conceived 
with the goal of explaining how the coding format determines the speed of 
search processes in LTM. Because it was designed for that purpose, it comes 
as no surprise that the representational assumptions of other categorization 
models are not nearly as explicit as those of the connectivity model. This 
makes it difficult to compare our model with others. The literature 
distinguishes between probabilistic, prototype, and exemplar models (cf. 
the review in Medin & E. E. Smith, 1984). More recently, connectionist 
approaches such as the distributed memory model (Knapp & J. A. 
Anderson, 1984), as well as independent cue and relational encoding models 
(Medin et al., 1984), have received widespread attention. 

In the foregoing sections, we saw that prototype models agree to a great 
extent with the assumptions of the connectivity model. The same also holds 
true for probabilistic models. Whether features are regarded as variables 
and their relative importance is indicated by probabilities, or whether they 
are defined within the framework of a network theory, is primarily a matter 
of the accuracy with which representational assumptions are defined. Both 
approaches, although different, can nevertheless be compatible. Thus, for 
example, activation values of individual features in a network can easily be 
interpreted in terms of probabilities. 

Similarly, exemplar models are also compatible with the basic assump¬ 
tions of the connectivity model. One or more typical examples of a category 
can serve to describe their central characteristic, as outlined in the foregoing 
section. Typical examples establish the intensely interconnected structure of 
overlapping features and therefore define the essential aspects of what is 
characteristic and typical of a category. So the exemplar model refers to 
some of those assumptions that also underlie the connectivity model. The 
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question of how the similarity between the concepts of a category may be 
described, whether by a probabilistic approach, by typical examples (Hintz- 
man, 1986; Hintzman & Ludlum, 1980), or by set theoretical approaches 
(Sattath & Tversky, 1987), is once again a matter of the accuracy of the 
representational assumptions. 

The models described previously, however, are only compatible with the 
connectivity model if they accept the assumption of correlating features. 
Independent cue models are, in contrast to relational coding models, not 
compatible with the connectivity model because they are based on the 
assumption that independent dimensions can be used to represent the 
meaning of concepts. However, a series of experiments (Medin et al., 1984, 
1987; Murphy & Medin, 1985) support the validity of relational encoding 
models and thus also an important assumption of the connectivity model. 

Distributed memory models proceed from the basic idea that similar 
codes overlap and are thus not stored independently of each other (Knapp 
& J. A. Anderson, 1984; McClelland & Rumelhart, 1985). These models are 
therefore not only compatible with the assumption of a correlated and 
interconnected feature structure, but also with Assumptions I and II 
(section 9.2.4) of the connectivity model. 

The most important distinction between the connectivity model and other 
theories refers to the question of how the complexity of a code can be a 
factor that either speeds up or slows down processing speed. The models 
addressed earlier do not give an answer to this question (chap. 12). 

9.3 THE CONNECTIVITY MODEL AND EMPIRICAL 
FINDINGS ON THE HIERARCHY EFFECT 

Collins and Quillian (1969) discovered that reaction time decreases in 
semantic decision tasks of the type “Is X a Y?” the further apart both 
concepts X and Y are in their hierarchical status. A number of experiments 
(Hoffman, 1986; Hoffman & Klimesch, 1984) repeated these findings. 
However, there are some important exceptions to this rule. But is the 
connectivity model capable of explaining these findings? 

The simplest explanation of the semantic hierarchy effect is based on the 
assumption that subordinate concepts comprise more features than middle- 
level concepts and these, in turn, have more features than superordinate 
concepts. This assumption appears to be plausible, as superordinate 
concepts are more abstract than the more concrete and specific ones. As 
shown in chap. 8, codes with many features can be processed faster than 
codes with only a few features. Consequently, in a semantic decision task, 
subordinate concepts will be judged faster than middle-level concepts and 
these, in turn, faster than superordinate concepts. 
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In a feature listing experiment, Hoffman and Zie/31er (1982) were actually 
able to demonstrate that the number of features decreases as the hierar¬ 
chical status of a concept increases (Hoffman, 1986, p. 68). This result thus 
provides a simple and straightforward explanation of the hierarchy effect: 
The more features a concept comprises, the quicker it can be processed. 

There are, however, exceptions to the hierarchy effect. Most interest¬ 
ingly, the hierarchy effect fails to appear in those cases in which the 
superordinate concept does not coincide with the basic concept level 
(Hoffman, 1982; Hoffman, Zie/31er, & Grosser, 1984; Jolicoeur, Gluck, & 
Kosslyn, 1984; Murphy & Smith, 1982; Rosch et al., 1976; E. E. Smith, 
Balzano, & Walker, 1978). Consider the following concept hierarchy as an 
example: “oak” —“deciduous tree” —“tree.” Here the superordinate concept 
“tree” is the basic concept because it is the highest ranking concept that can 
still be represented by a common sensory prototype. In the conceptual 
hierarchy “jeep” —“car” —“vehicle,” the middle-level concept “car” is the 
basic concept. However, it is also possible that the basic concept lies on the 
level of the subordinate concept, as is illustrated in the example “banana” — 
“fruit” —“nourishment.” Here the middle-level concept “fruit” shows no 
common sensory characteristics that would apply to all or at least the 
majority of the various types of fruit. Using concept hierarchies of that 
type, Hoffman (1986, p. 89) and Hoffman and Klimesch (1984, p. 17) 
demonstrated that in a semantic decision task of the type “Is X a Y?” the 
basic concepts “tree,” “car,” and “banana,” reveal the shortest decision 
times, and their rank in the concept hierarchy does not play any role (Fig. 
9.4). 

These results clearly indicate that the hierarchical rank of a concept can 
in no way be the only factor influencing reaction times in semantic decision 
experiments. Simple hierarchical coding models (e.g. Collins & Quillian, 
1969) are, therefore, not in a position to explain the findings discussed here. 

The most conclusive evidence supporting the connectivity model is an 
additional finding that was discovered in the aforementioned feature-listing 
experiment by Hoffman and Ziegler (1982). Here it was demonstrated that 
subordinate concepts comprise the highest number of features only if they 
are at the same time basic concepts, and that basic concepts generally have 
more features than other concepts of the same hierarchical level. Similar 
findings were also reported by Tversky and Hemenway (1984). They found 
that subjects list many features (here understood more specifically as “parts 
of objects”) for basic concepts, but only a few for those concepts ranking 
higher in the conceptual hierarchy. 

These important findings provide additional support for the hypothesis 
that it is the number of features, and not the hierarchical status per se, 
which determines the length of semantic decision times. The more features 
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FIG. 9.4. In a semantic decision task, basic level concepts (marked with “*”) show the 
fastest RTs, regardless of their hierarchical rank (1 = subordinate level; 2 = middle 
level; 3 = superordinate level). Data from Die Welt der Begriffe (p. 89) by Hoffmann, 
1986. © 1986 by VEB. Reprinted with permission. 

a concept comprises, the faster it can be processed. Because basic concepts 
possess the most features, they show the shortest decision times. 

Section 8.6.1 emphasized that the number of overlapping (i.e., common) 
features is an additional factor that speeds up processing time. Basic 
concepts are defined by virtue of the fact that they have many sensory 
features that they usually share with a variety of subordinate concepts. We 
have assumed that common features are at one and the same time typical 
(Assumptions I and II). Consequently, basic concepts are also processed 
faster because they show many typical (i.e., common or overlapping) 
features. (See the example in Fig. 9.3 in which “bird” is the basic concept.) 

The large number of overlapping features that exist between basic and 
subordinate concepts leads one to expect that reaction time differences 
between typical and less typical concepts are not very pronounced. For 
example, take the superordinate concept “tree,” which is at the same time 
the basic concept. The typical oak should not be recognized any sooner than 
the untypical acacia. This assumption arises because, in this example, the 
degree of family resemblance will be generally very high for all of the 
concepts in that category. Consequently, the lack of a few common features 
will only have a small effect. If, however, we consider the typicality relation 
between the superordinate concept “nourishment,” which is not a basic 
concept, and subordinate concepts (like “bread,” “banana,” and “pump¬ 
kin,” etc.), then it becomes evident that there are only a small number of 
overlapping features. Consequently, the degree of family resemblance will 
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be very low. It is precisely for this reason that the differences between 
typical and untypical concepts in more heterogenous categories should be 
more pronounced. Hoffman’s (1986, p. 90) findings support this assump¬ 
tion and demonstrate that typicality differences are much more pronounced 
if the superordinate concept is not a basic concept. 

9.4 THE CONNECTIVITY MODEL AND EMPIRICAL 
FINDINGS ON THE TYPICALITY EFFECT: EVALUATING 

ASSUMPTION I 

The findings described thus far have shown that the connectivity model is 
capable of explaining those effects that refer to the hierarchical structure of 
concepts. This section focuses on Assumption I, which states that the 
typical features of a category are the features of the superordinate concept 
denoting this category. This crucial assumption was tested in an experiment 
designed especially for this purpose (Experiment 1, Klimesch, 1987). 

In this study, subjects were asked to list features for a series of 72 
subordinate concepts and 6 middle-level concepts (“bird, “fruit,” “vegeta¬ 
ble,” “article of clothing,” “vehicle,” “weapon”). The sample of 72 subor¬ 
dinate concepts comprises 6 groups of 12 concepts, each group belonging to 
one of the 6 middle-level concepts. For each of the 72 words, the following 
word norms (taken from Toglia & Battig, 1978) were available: imagery, 
categorizability, meaningfulness, familiarity, and the estimated number of 
features as well as the typicality scores collected by Rosch (1975, p.229). 
Subjects were instructed to associate each word with those properties that 
determine important features, parts, or functions of the object denoted by 
the respective word (see the instructions in Klimesch, 1987, p. 56). For data 
analysis, only those features listed by at least two subjects were considered. 
After this first selection, which yielded a total of 397 different features, the 
frequency with which each feature occurred was determined. Then a 
split-half reliability coefficient was calculated: The sample of subjects was 
devided into two halves, and within each half the frequency with which a 
feature occurs was calculated. Thus, two frequency values were collected 
for each of the 397 features. Correlating the frequencies within the selected 
sample of features yielded a coefficient of r = .71 (p < .001, N = 397). 

Before Assumption I can be tested, we have to make sure that super- and 
subordinate concepts do indeed share common features. 

9.4.1 Do Super- and Subordinate Concepts Share 
Common Features? 

In analyzing the features of middle-level concepts together with those of 
their subordinate concepts, we find that in 62 of the 72 cases common 
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features do exist. Thus, in about 90% of all examined cases a subordinate 
concept shares at least one feature with its corresponding superordinate 
concept. The results for the categories “vehicles” and “birds” are listed in 
Table 9.2. Keeping in mind that the collected features are just verbal 
correlates of inferred features, and that the way of associating the respective 
verbal label may vary considerably from subject to subject, the extent of 
feature overlap found in this experiment is undoubtedly large enough to 
validate Assumption I. 

9.4.2 Are Common Features Also Typical 
Features? 

In examining this question we proceeded from the notion that features 
frequently listed (e.g., “fly” for bird in Table 9.2) are more important for a 
concept than those indicated less frequently (e.g., “lays eggs”). Accordingly, 
frequencies may be interpreted as weights. For common features, two 
different types of weights or frequencies must be considered. One of the two 
frequencies indicates how important a feature is for the superordinate 
concept (see the column entries in Table 9.2), whereas the other frequency 
reveals how important this same feature is for the subordinate concept (see 
the unbracketed numbers in the rows of Tables 9.2, Part A, B). 

According to the connectivity model, typicality is a function of the 
number of common features. The extent of a concept’s typicality may thus 
be expressed by the weighted sum of common features (variable WSC; see 
the bracketed numbers in the rows of Table 9.2). Variable WSC can be 
interpreted as a measure for the typicality of a subordinate concept (see the 
values in the last column of Table 9.2). It indicates to what extent a 
subordinate concept shares important features with its superordinate con¬ 
cept. The higher the WSC, the more typical is the respective concept. 

The procedure described here is similar to that used by Rosch and Mervis 
(1975) in determining family resemblance. The essential difference between 
both methods lies in the way common features are defined. According to 
Rosch and Mervis, common features are those that occur in many subor¬ 
dinate concepts of a category. In contrast, we proceed from the hypothesis 
that common features are those that a superordinate concept shares with its 
subordinate concepts. However, we also have to keep in mind that features 
occurring frequently in a category are most likely to be at the same time the 
features of the respective superordinate concept. It can therefore be 
assumed that both definitions will lead to similar conclusions. 

In verifying this hypothesis, the following procedure was used. In Step 1 
those features were determined for each of the six categories which 
occurred in at least 4 of the 12 subordinate concepts. In Step 2 these features 
were compared with those of the corresponding superordinate concept. As 



TABLE 9.2 
Distribution of Features for the Concepts “Vehicle” and “Bird” 

A. Concept “ Vehicle” 

Transportation Wheels Fast Motor Driving 

Concept 14 13 7 7 4 WSC 

Car 10(140) 17(221) 5(35) 11(77) 2(8) 481 

Truck 6(84) 18(234) 0 9(63) 0 381 

Scooter 4(56) 15(195) 3(21) 9(63) 0 335 

Jeep 2(28) 14(182) 3(21) 2(14) 2(8) 253 

Jet 3(42) 0 16(112) 6(42) 0 196 

Tractor 0 14(182) 0 2(14) 0 196 

Trailer 0 14(182) 0 0 0 182 

Train 4(56) 2(26) 3(21) 10(70) 0 173 

Trolley 4(56) 6(78) 0 0 0 134 

Boat 0 0 3(21) 9(63) 0 84 

Ship 0 0 0 2(14) 0 14 

Yacht 0 0 0 0 0 0 

Sum 33 100 33 60 4 

Mean WSC 202 

SD 143 

B. Concept “Bird” 

Makes Lays 

Fly Feather Wing Beak Sing a Nest Eggs 

20 14 13 12 7 6 5 WSC 

Sparrow 12(240) 10(140) 10(130) 7(84) 4(28) 6(36) 3(15) 673 

Robin 11(220) 11(154) 10(130) 4(48) 9(63) 2(12) 2(10) 637 

Eagle 12(240) 13(182) 9(117) 7(84) 0 0 2(10) 633 

Duck 7(140) 18(252) 5(65) 9(108) 0 0 2(10) 575 

Lark 12(240) 7(98) 6(78) 4(48) 13(91) 0 0 555 

Pigeon 9(180) 10(140) 11(143) 7(84) 0 0 0 547 
Hawk 11(220) 10(140) 7(91) 8(96) 0 0 0 547 
Cardinal 10(200) 10(140) 8(104) 7(84) 0 0 0 528 
Owl 10(200) 14(196) 5(65) 3(36) 0 0 0 497 

Bluejay 8(160) 11(154) 8(104) 2(24) 3(21) 3(18) 2(10) 491 
Swallow 10(200) 7(98) 7(91) 6(72) 2(14) 0 0 475 

Crow 8(160) 8(112) 9(117) 7(84) 0 0 0 473 
Sum 120 129 95 71 31 11 11 

Mean WSC 554 
SD 67 

Note: The number in each column represents the frequency with which a feature was listed 

by a sample of 28 subjects; numbers in parenthesis represent weights and are obtained by 

multiplying the features in each row and column; WSC stands for Weighted Sum of Common 

Features, which is the sum of weights in each row. 
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a result it was found that 70% of the features determined in the first stage 
were features of the superordinate concept. This high degree of overlap 
confirms the assumption that WSC and the measure of “family resem¬ 
blance” yield similar results. 

Is WSC in fact a suitable variable with which to define typicality? In 
trying to answer this question, variable WSC was correlated with the 
typicality scores (variable typicality TYP) collected by Rosch (1975). The 
result shows the highly significant correlation between WSC and TYP of r 
= - .39 (p < .001; n = 72). The fact that the correlation is negative is due 
to the way variable TYP is scaled: A low rating score indicates high 
typicality, whereas a high WSC score indicates low typicality. In order to 
avoid any misinterpretation, it should be emphasized that variable TYP 
used here was determined by ratings and not on the basis of family 
resemblance measurements. 

9.4.3 Overlapping Features, Degree of 
Interconnectedness, and Basic Concepts 

Assumption I and the arguments outlined in section 9.3 suggest that 
subordinate concepts belonging to a basic concept show a greater number of 
features than subordinate concepts not belonging to a basic concept. As we 
have pointed out, variable WSC reflects the weighted sum of features a 
superordinate concept shares with the subordinate concepts. It can thus be 
expected that basic concept categories will, on average, show higher WSC 
values than those categories that do not belong to a basic concept. Only one 
of the six superordinate concepts used in the following experiment, namely 
“bird,” is a basic concept. The average WSC values and standard deviations 
of the 12 subordinate concepts of each category are listed in Table 9.3. 

As the results in Table 9.3 show, the basic concept “bird” comprises more 
than twice as many common features than the remaining categories. 
According to the connectivity model, this result means that basic categories 
show an especially high number of intensely interconnected features that 
can therefore be processed very quickly. This particular prediction of the 
connectivity model (discussed in more detail in section 9.6) is also supported 

TABLE 9.3 
Weighted Sum of Common Features (WSC) for Six Different Categories 

Bird Fruit Vegetable Weapon Vehicle Clothes 

Mean 554 162 136 103 202 80 

SD 67 69 159 86 143 80 

Note: Bird is the only basic category concept; it has the lowest standard deviation and the 

highest mean. 
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by Hoffman’s findings, as depicted in Fig. 9.4: Independently of their status 
in the concept hierarchy, basic concepts show by far the shortest processing 
times in semantic decision experiments. 

The connectivity model also enables a better understanding of those 
findings indicating that typicality effects in basic concept categories are 
much weaker than in nonbasic concept categories (Hoffman, 1986, p. 90). 
This result is to be expected when considering the fact that for the basic 
concept “bird,” variable WSC has the smallest standard variation while at 
the same time showing the largest mean. The large number of common 
features and the small variance between different subordinate concepts 
indicate a consistently high degree of overlapping features in that category. 
Consequently, average typicality will be high, but differences in typicality 
will be small. 

9.5 THE CONNECTIVITY MODEL AND EMPIRICAL 
FINDINGS ON TRADITIONAL WORD NORMS 

It is well known that word norms such as Typicality (TYP), Concreteness 
(CON), Imagery (IMG), Familiarity (FAM), Meaningfulness (MNG), Ca- 
tegorizability (CAT), Pleasantness (PLS), and the Number of Attributes or 
Features (NOA/NOF) have a strong influence not only on reaction time but 
on memory performance as well. The definition and empirical investigation 
of these variables has been described in detail by Rosch (1975), Toglia and 
Battig (1978), and Rubin (1980). In this section we want to show that the 
connectivity model is capable of explaining a variety of effects that word 
norms exert on reaction time and memory performance. The way in which 
the typicality of concepts is represented has already been explained. 

Let us first examine variables CON and IMG. It seems plausible to 
assume that concrete and imaginable concepts are represented by a variety 
of sensory features. Presumably, the more concrete and imaginable a 
concept is, the more sensory features it will comprise. The representation of 
CON and IMG can therefore be explained by the number and type of 
features a concept comprises. Because an increase in the number of sensory 
features is related to an increase in CON and IMG, it is to be assumed that 
concrete and imaginable concepts are not only processed faster, but are also 
better remembered than less concrete and imaginable concepts. 

A similar argument also applies to variables FAM and MNG. We may 
assume that the frequent use of a concept will lead to an increasing 
differentiation in its meaning. This results in an increase in the number of 
features and their interconnections. Most likely, similar factors also apply 
to MNG: The more meaningful a concept is, the larger the number of 
features is and the more intensely interconnected they are. As we already 
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know, these factors operate to speed up processing time and to increase 
memory performance. 

Variable CAT may be explained in a similar way as typicality. Here we 
are concerned with the number of common features. Many common 
features will facilitate the ease with which a concept can be categorized. 
However, in contrast to processing speed in semantic tasks, an increase in 
the number of common features may not necessarily lead to an improved 
memory performance. 

The representation of PLS is, in comparison with all other variables, 
more difficult to explain, because here the positive or negative valency of 
emotionally important features must be considered. This issue, as well as 
the question of whether or not pleasant concepts are represented by a larger 
number of emotional features than less pleasant concepts, cannot be 
decided on the basis of theoretical considerations. The lack of experimental 
results on the representation of emotional features adds to the difficulty of 
explaining the effects of PLS within the framework of the connectivity 
model. 

9.5.1 The Relationship Between the Number of 
Features and Traditional Word Norms 

The correlations reported later are based on the sample of 72 concepts used 
by Klimesch (1987, Experiment 1). As outlined earlier in this chapter, three 
different variables are available to estimate a concept’s complexity: number 
of attributes (NOA) as determined by Toglia and Battig in a rating 
experiment, number of features (NOF), and weighted sum of features 
(WSF). Because it was determined by a rating procedure, variable NOA can 
be considered a more indirect measure of the number of features. In 
contrast to this, variable NOF indicates the average number of features 
subjects actually have listed for a concept. Variable WSF not only reflects 
the number, but also the frequency with which individual features were 
listed. Let / (i, j) be the frequency with which a certain feature j was listed 
as belonging to concept i. In summing up the frequencies of all the features 
j gives the corresponding value of variable WSF for concept i. 

Our sample of 72 concepts is heterogenous because it was drawn from six 
different categories. Thus, we are not only concerned with the variance 
within each category but also with the variance between the categories. If 
both variances vary in the same direction, the correlation coefficient will 
increase, otherwise it will decrease. In order to prevent a distortion of the 
correlation coefficient by this effect, we have transformed the data in such 
a way as to completely eliminate the differences between the category 

means. 
In Table 9.4 the results of the transformed as well as the nontransformed 
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TABLE 9.4 
Intercorrelations Between Concept Variables 

A. Data Transformed 

1 2 3 4 5 6 7 8 9 10 11 

TYP CON IMG CAT MNG FAM NOA PLS WSC NOF WSF 

1 TYP * 

2 CON -.05 * 

3 IMG -.13 .49 * 

4 CAT -.17 .51 .71 * 

5 MNG -.17 .49 .46 .41 * 

6 FAM -.21 .24 .39 .32 .69 * 

7 NOA -.19 .29 .25 .43 .58 .43 * 

8 PLS -.08 .22 .25 .20 .24 .06 .20 * 

9 WSC -.39 .08 .10 .09 .06 .16 .19 -.08 * 

10 NOF -.33 .04 .30 .32 .36 .36 .40 -.04 .38 * 

11 WSF -.40 .08 .35 .45 .34 .37 .37 -.03 .42 .84 * 

Mean 2.1 6.0 5.8 5.9 4.5 6.1 3.8 4.3 206 5.5 53.8 

SD .82 .29 .31 .38 .44 .32 .40 .49 103 1.7 17.6 

B. Data Not Transformed 

1 2 3 4 J 6 7 8 9 10 11 

TYP CON IMG CAT MNG FAM NOA PLS WSC NOF WSF 

1 TYP * 

2 CON -.08 * 

3 IMG -.15 .49 * 

4 CAT -.26 .55 .68 * 

5 MNG -.12 .38 .41 .20 * 

6 FAM -.19 .28 .37 .26 .69 * 

7 NOA .07 .02 .17 .00 .50 .22 * 

8 PLS -.19 .27 .35 .47 .15 .16 -.03 * 

9 WSC -.28 -.04 .08 .24 -.14 -.17 .07 .22 * 

10 NOF -.30 -.09 .28 .18 .34 .21 .41 .10 .44 * 

11 WSF -.44 .03 .36 .43 .25 .24 .19 .13 .43 .81 * 

Mean 2.1 6.0 5.8 5.9 4.5 6.1 3.8 4.3 206 5.5 53.8 
SD .88 .32 .33 .46 .48 .36 .57 .76 190 2.0 19.6 

data are shown. In interpreting the results, however, we rely on the 
transformed data. 

Inspection of Table 9.4 reveals that the hypotheses derived from the 
connectivity model are confirmed (see the correlations of variable NOA in 
row 7 with variables CON, IMG, CAT, MNF, FAM). The more features a 
concept comprises, the more concrete, pictorial, easy to categorize, mean¬ 
ingful, and familiar these concepts are. Variables NOF and WSF, as 
determined by Klimesch (1987), show a similar result (refer to rows 10 and 
11): IMG, CAT, MNG, and FAM are positively and significantly correlated 
with NOF as well as WSF. 
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The correlations reported by Toglia and Battig (1978), which are based on 
a very large sample of more than 2,000 words, yield further support for the 
connectivity model (Table 9.5). Here too, variable NOA shows significant 
correlations with CON, IMG, CAT, MNG, and FAM. 

PLS is the only variable that is not significantly correlated with any of 
those variables reflecting the number of features. However, variable PLS is 
only weakly correlated with other variables. There are only two correlations 
with PLS that slightly exceed the 5% level of significance. A similar pattern 
of results can be found in Toglia and Battig (Table 9.5). Here too, variable 
PLS shows the weakest intercorrelations in comparison to all other 
variables. This result supports the assumption mentioned earlier stating that 
emotionally important information may not be represented by semantic 
features. Without considering the emotional valency it would be difficult to 
grasp the encoding structure of emotionally important concepts. 

Toglia and Battig’s results are in accordance with those correlations that 
were found for the transformed variables. This is at first surprising, because 
Toglia and Battig did not undertake any data transformation. However, in 
considering that the number of natural categories is limited, it is plausible 
to assume that the distorting influence of different categories decreases as 
the number of concepts increases. A comparison of sample size (N = 2,854 
in Toglia & Battig; N = 72 in Klimesch) supports this assumption and 
shows that large samples with nontransformed data apparently yield results 
similar to small samples with transformed data. 

Section 9.4 pointed out that typicality can be explained by the number of 
common features that a superordinate concept shares with its subordinate 
concepts. According to this hypothesis, it seems obvious to assume that a 
concept’s number of common features increases as the number of features 
in the entire category increases. Consequently, significant correlations are 
to be expected between typicality and those variables reflecting the number 

TABLE 9.5 
Intercorrelations Between Word Norms 

CON IMG CAT MNG FAM NOA PLS 

CON * 

IMG .883 * 

CAT .887 .905 * 

MNG .425 .675 .589 * 

FAM .319 .557 .488 .820 * 

NOA .386 .543 .524 .749 .554 * 

PLS .215 .267 .278 .309 .267 .390 * 

Mean 4.40 4.55 4.33 4.03 5.59 3.56 4.01 

SD 1.23 1.14 1.19 0.89 1.13 0.73 0.84 

Note: Data from Handbook of Semantic Word Norms (p. 47) by Toglia and Battig, 1978. 

© 1978 by Lawrence Erlbaum Associates. Adapted with permission. 



156 9. A CONNECTIVITY MODEL FOR SEMANTIC PROCESSING 

of common features. However, no systematic relationship can be expected 
with respect to the remaining variables. The results of Table 9.4. confirm 
this conjecture and show that variable typicality (TYP), as defined by 
Rosch, takes on a special status: It fails to correlate with any of the 
traditional variables such as CON, IMG, CAT, MNG, FAM, and PLS. But 
highly significant correlations do exist with variables WSC and WSF. The 
high correlation between TYP and the weighted sum of common features 
(WSC) has already been discussed and corresponds nicely with the predic¬ 
tions of the connectivity model. The highly significant correlation between 
the number of features (NOF) and WSC was to be expected. As indicated 
by the results in Table 9.1, categories with many features also tend to have 
more common features. The negative correlations with typicality are due to 
the way in which typicality is measured: A low typicality value characterizes 
a highly typical concept. 

The results discussed here may be summarized as follows: 

1. In confirming the predictions of the connectivity model, the number 
of features (measured by NOA, NOF, and WSF) correlates significantly 
and positively with the traditional variables IMG, CAT, MNG, FAM, and 
partly with CON. 

2. These findings support the assumption that variables CON, IMG, 
CAT, MNG, and FAM can be explained by the number of semantic 
features a concept comprises. Therefore, it is to be expected that these five 
variables are also highly correlated among each other. The results confirm 
this assumption (see the respective correlations in Tables 9.4 Part A and 
9.5). 

3. In contrast to CON, IMG, CAT, MNG, and FAM, variable PLS 
constitutes an exception: It does not correlate with the number of features 
(neither with NOA nor with NOF or WSF) and shows no systematic 
correlations with other variables. 

4. Rosch’s typicality is also exceptional: It is the only variable that can be 
explained exclusively by the number of common features. Variable TYP is 
not significantly correlated with any of the traditional variables, which 
confirms this explanation. 

9.5.2 The Relationship Between the Number of 
Features and Memory Performance 

The predictions of the connectivity model refer not only to processing speed 
but also to memory performance. The more components a code has, the 
better it is integrated in long-term memory and the easier it is to remember 
(refer to the component-decay model of section 4.3). It can therefore be 
expected that concepts with many features can be remembered better than 
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concepts with only a few features. The results of an extensive study from 
Rubin (1980), in which 51 different word norms were correlated and factors 
analyzed in a sample of 125 words, allow us to examine our hypothesis. The 
most important variables in Rubin’s study are free recall and recognition 
scores that were determined in an experiment designed especially for that 
purpose. Those findings relevant here are listed in Table 9.6. 

Rubin’s results show a highly significant and positive relationship be¬ 
tween memory performance and the number of features (as measured by 
variable NOA) and thus confirm an important prediction of the connec¬ 
tivity model. The more features a concept comprises, the better it can be 
remembered. This holds true not only for free recall (see variable FRE in 
Table 9.6), but also for recognition performance (see variable REC). 

It is surprising, however, that NOA is only weakly and unsystematically 
correlated with CON, IMG, CAT, MNG, and FAM. This contradicts the 
findings of Klimesch (1987) and Toglia and Battig (1978), as depicted in 
Tables 9.4 Part A and 9.5. Possibly Rubin (1980), though using a 
comparatively small sample, did not make an attempt to transform his data 
in order to eliminate the distorting influence of intercategory variance. This 
view is confirmed by comparing his results with those of the nontrans- 
formed data in Table 9.4 Part B. In accordance with Rubin’s findings, the 
corresponding correlation coefficients in Table 9.4 Part B are also only 
weakly pronounced. 

The fact that free recall performance increases with the number of 
semantic components is also demonstrated by Johnson-Laird, Gibbs, and 
de Mowbray (1978). In the first part of the experiment, subjects were asked 
to decide whether or not a series of words shows one or both of the two 
features “solid” and “consumable” (e.g., “apple” shows both, “cream” and 
“hammer” only one, “gasoline” shows neither of the two features). Fol- 

TABLE9.6 
Intercorrelations Between Word Norms 

41 

FRE 

51 

REC 

13 

CON 

12 

IMG 

16 

CAT 

17 

MNG 

24 

FAM 

19 

NOA 

31 

PLS 

41 FRE * 

51 REC .42 * 

13 CON .19 .02 * 

12 IMG .31 .23 .88 * 

16 CAT .20 .12 .91 .89 * 

17 MNG .18 .12 .67 .73 .67 * 

24 FAM .20 .25 .15 .26 .22 .22 * 

19 NOA .28 .32 -.19 -.05 -.16 .01 .33 * 

31 PLS .29 .29 .24 .32 .25 .28 .38 .31 * 

Note: Data from Rubin, 1980, Journal of Verbal Learning and Verbal Behavior, 19, p. 746. 

© 1980 by Academic Press. Adapted with permission. 



158 9. A CONNECTIVITY MODEL FOR SEMANTIC PROCESSING 

lowing this simple categorization task, subjects performed a memory task in 

which all words —not just those judged positive — were to be recalled. The 

results showed that memory performance is a function of the number of 

features: Words that showed both features were remembered more easily 

than those with only one feature and these, in turn, were remembered more 

easily than words that showed neither of the two characteristics. 

Free recall and recognition tasks consist of a mixture of episodic and 

semantic demands (see Tulving, 1983, and the detailed discussion in 

Klimesch et al., 1988). Although up to now we have considered only purely 

semantic tasks, Rubin’s results point to the fact that the predictions of the 

connectivity model are also applicable to episodic tasks. The findings 

reported by Klimesch et al. (1988) support this assumption. 

9.6 THE CONNECTIVITY MODEL AND EMPIRICAL 
FINDINGS ON CASE 1: SEARCHING TWO CODES THAT 

SHARE COMMON FEATURES 

The previous sections have dealt with the general predictions of the 

connectivity model. It was shown that not only processing speed but also 

memory performance increases with an increasing number of semantic 

features. The connectivity model, however, also enables far more sophisti¬ 

cated predictions, if the relationship between two codes X and Y (to be 

judged, for example, in a semantic decision experiment) is taken into 

consideration. As we know from section 8.6.1, two different cases must be 

distinguished: Either both codes are connected by common features (Case 1 

in section 8.6.1) or by a common pathway (Case 2 in section 8.6.2). Detailed 

predictions for Case 2 depend on the exact geometric characteristics of the 

common pathway, which can hardly be determined empirically. In testing 

Case 1, on the other hand, it must only be guaranteed that two codes share 

common features. In this case, which we have discussed in detail in section 
8.6.1, precise predictions can be made. 

In section 9.4 we were able to demonstrate that a subordinate concept X 

(e.g., “eagle”) does indeed share common features with its natural superor¬ 

dinate concept Y (e.g., “bird”). Thus, the data collected in the feature listing 

experiment by Klimesch (1987, Experiment 1) can now be used to design a 

semantic decision task of the type “Is X a Y?”, in which the reaction times 

for yes and for no responses are measured as dependent variables. It is 

crucial in deriving predictions for Case 1 that a yes response can only be 

carried out if common features exist between the two concepts X and Y. As 

we know from section 8.6, more indirect activation flows back to the source 

nodes if common features exist. This strengthening effect of preactivation 

provides positive evidence for a yes response (refer to the detailed explana- 
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tions in section 8.6.1). The speed with which a yes response can be carried 

out depends on three factors: the number of features of X, the number of 

features of Y, and the number of common features (cf. Equation 8.15 in 

section 8.6.1). Thus, we can proceed from the following three predictions: 

Prediction 1: The speed with which a yes response can be carried out 

increases with the number of features subordinate concept X comprises, 

Prediction 2: With the number of features superordinate concept Y 

comprises, and 

Prediction 3: With the number of features X and Y share. 

If two concepts do not share common features, then the accelerating 

influence of preactivation is lacking, and the search process terminates as 

soon as indirect activation Is flows back to the source nodes. Because 

indirect activation Ip is always greater than Is and will thus always spread 

more quickly, the arrival of Is at one of the two concept nodes provides 

clear evidence for a no response. Therefore, the only factor influencing a 

negative decision is the number of features of that code comprising the most 

features. We have shown that —with the exception of basic categories — 

subordinate concepts always tend to have more features than superordinate 

concepts. It can therefore be expected that it is only the feature number of 

the subordinate concepts X that determine the reaction times for no 

responses. When comparing yes and no responses, we see that for negative 

decisions the accelerating effect of the feature number is less pronounced 

than for positive decisions. This is due to the following reasons: 

1. In all of those instances in which superordinate concepts are basic 

concepts and as a result comprise more features than the subordi¬ 

nate concept, the degree of correlation between the number of 

features of X (variable NOF) and decision time for no responses 

will be lowered. 

2. The extent of preactivation in yes responses is not only a function 

of the total number of features, but also a function of the number 

of features X and Y share. In negative decisions this additional and 

multiplicative influence of the number of common features is 

missing (see equation 8.15 in section 8.6.1). 

In summary, the following predictions are valid for no responses: 

Prediction 4: Reaction time decreases with an increasing number of 

features, subordinate concept X comprises. 

Prediction 5: The number of common features does not affect reaction 

time. 



160 9. A CONNECTIVITY MODEL FOR SEMANTIC PROCESSING 

If one considers that Is is smaller than Ip, then it can also be shown that the 

reaction time for no responses must be longer than that for yes responses. 

Prediction 6: Reaction times for no responses are generally longer than 

those for yes responses. 
Prediction 7: As compared to yes responses, the number of features of X 

has a smaller effect on reaction time. 

Whereas Predictions 4, 6, and 7 are obvious and straightforward, 

Prediction 5 may require some explanation. A negative trial in a task of the 

type “Is X a Y?” consists of a subordinate concept X not belonging to Y. 

Concept X, however, will share features with another superordinate 

concept Z. Prediction 5 simply states that, in this case, the number of 

common features between X and Z will not have any effect on the decision 

“Is X a Y?” 
Semantic decision experiments (Experiments 2 and 3 by Klimesch, 1987) 

of the type “Is X a Y?” were used to test the predictions listed earlier. For 

the calculation of analyses of variances, the 12 subordinate concepts in each 

of the six categories were divided into two groups. Group NOF + represents 

those six concepts of each category that are rich in features (i.e., that fall 

above the respective mean), whereas group NOF- represents those that 

show fewer features (i.e., those that fall below the respective mean). The 

same procedure was applied to variable WSC. 

For yes responses, the results of Experiment 2 support Prediction 1 and 

show a highly significant effect of the number of features: Concepts with 

many features can, on average, be processed 42 ms faster than those with 

fewer features. A similar result was found for Prediction 3: Subordinate 

concepts with many common features are, on average, processed 28 ms 

faster than subordinate concepts sharing only a few features. 

In accordance with Prediction 5, variable WSC did not yield any 

significant effects for no responses. Similarly, no significant effects were 

found for variable NOF. Prediction 4 was also supported. Even for no 

responses, more complex concepts can be processed slightly faster than less 

complex concepts. However, the respective reaction time difference is only 

13 ms and is therefore three times smaller than for yes responses. This latter 

result lends support to Prediction 7. Comparing RT differences between yes 

and no responses reveals a highly significant result that agrees with 

Prediction 6: Reaction times for yes responses are on average 67 ms shorter 

than those for no responses. 

Experiment 3 was designed to test Prediction 2 and to replicate the results 

of Experiment 2. Here the same set of 72 subordinate concepts was used. 

But in Experiment 3 the superordinate concepts were replaced by the two 

abstract concepts “living” (birds, fruits, and vegetables) and “nonliving” 
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(vehicles, weapons, and articles of clothing). Subjects no longer had to 

judge whether or not an eagle is a bird, but whether or not an eagle is a 

“living being.” Compared to the 12 superordinate concepts of Experiment 2, 

the superordinate concepts “living” and “nonliving” are on a higher level of 

abstraction. Thus, according to the arguments outlined in section 9.3, it 

must be assumed that they show fewer features than the superordinate 

concepts of Experiment 2. Their comparatively small number of features, 

which are presumably too abstract in nature to allow for an intense 

interconnection with subordinate concepts, leads to the hypothesis that the 

reaction times of Experiment 3 must be generally longer than those of 

Experiment 2. Variable WSC was only determined for the superordinate 

concepts of Experiment 2. Thus, we do not expect WSC to exhibit any 

effects in Experiment 3. With regard to variable NOF, on the other hand, 
all of the predictions are equally applicable. 

The results of Experiment 3 confirm Prediction 2 and show that abstract 

superordinate concepts require longer processing times (Table 9.7). As 

expected, variable WSC shows no significant effects, neither for yes 

responses or no responses. On the other hand, variable NOF yields highly 

significant results that match those of Experiment 2. Furthermore, an 

examination of the respective reaction times shows once again that complex 

concepts can be processed faster than less complex ones. The average 

difference in reaction time for yes responses is 44 ms (42 ms in Experiment 

2) and 18 ms for no responses (13 ms in Experiment 2). These results, 

therefore, confirm Predictions 1, 4, and 7. In addition, the average reaction 

time difference between yes and no responses lies in the same direction 

(Prediction 6) and on a similar scale to Experiment 2 (57 ms in Experiment 
3 and 67 ms in Experiment 2). 

The correlations outlined in Table 9.7 accord with the variance analytical 

findings. As the highly significant correlation coefficient between NOF and 

TABLE 9.7 
Intercorrelations Between Reaction Times, NOF, and WSC 

No3 Yes3 No2 Yes2 NOF WSC 

No3 * 

Yes3 .56 * 

No2 .19 .12 * 

Yes2 .45 .43 .16 * 

NOF -.21 -.38 -.05 -.51 * 

WSC -.00 -.26 -.13 -.27 .38 * 

Mean 821 764 764 697 5.5 206 
SD 63 62 79 53 1.7 103 

Note: No3, Yes3, No2, and Yes2 refer to No and Yes responses in Experiments 3 and 2. 
Data from Klimesch, 1987, Psychological Research, 49, p. 60. © 1987 by Springer. Reprinted 
with permission. 



162 9. A CONNECTIVITY MODEL FOR SEMANTIC PROCESSING 

reaction times for yes responses in Experiment 2 demonstrates, the number 

of features accounts for more than 25% of the reaction time variance. 

This clear and convincing confirmation of the connectivity model should 

not prevent us from testing whether or not competing models would also be 

in a position to explain the previous results. The accelerating effect of 

common features is consistent with all of the other models of semantic 

memory (Medin et al., 1987; Rosch & Mervis, 1975; and the reviews in 

Johnson-Laird, 1987; E. E. Smith, 1978; E. E. Smith & Medin, 1981). 

However, the fact that an increasing number of semantic features operates 

to speed up processing time cannot be explained by any other model. But we 

have to be careful in evaluating this hypothesis. If it turns out that the 

number of features (NOF) is so highly correlated with the number of 

common features (WSC) that NOF cannot be considered as an independent 

predictor for reaction time, then the validity of a crucial hypothesis of the 

connectivity model would be seriously threatened. 

In order to test a possible confounding of NOF by WSC, partial 

correlations were calculated. If the influence of WSC on the correlation 

between NOF and Yes2 (reaction times of yes responses in Experiment 2) is 

eliminated, then the original value of r = —.51 decreases slightly to r = 

- .46. A similar result was found for the correlation between NOF and 

Yes3. Here too, the elimination of WSC causes only a small decrease from 

the original r = - .38 to r = - .31. These results demonstrate that NOF 

can be considered an independent and significant predictor for reaction 
time. 

9.7 THE CONNECTIVITY MODEL AND EMPIRICAL 
FINDINGS ON THE PREACTIVATION OF SEMANTIC 

FEATURES 

The predictions of the connectivity model are not only applicable to the 

relationship between sub- and superordinate concepts, but also to the 

relationship between a concept and its features. Priming experiments are 

particularly well-suited in examining this question. If a subject is asked to 

make congruency judgments for serially presented word pairs (e.g., one 

denoting a concept such as “bird,” the other a feature such as “flies”), it can 

be demonstrated that congruent words are judged much faster than 

incongruent words. These positive priming effects have long been known 

and have been described in detail elsewhere (Collins & E. F. Loftus, 1975). 

The connectivity model is also suited to explain priming effects. For 

example, consider the congruent word pair “flies”-“bird,” and the incon¬ 

gruent word pair “swims”-“bird.” In the following we show that the extent 



PREACTIVATION OF SEMANTIC FEATURES 163 

of preactivation in priming experiments essentially depends on the number 

of features and the degree of feature overlap. 

In priming experiments, semantic features such as “swims” or “flies” are 

presented as words. However, in section 9.2.2 we emphasized that semantic 

features are not verbal units. It is therefore necessary to introduce a 

notation that reflects this distinction between features and their verbal label 

representing a concept. Let us first look at the features “flies” or “swims.” 

In their general meaning they are concepts that again have features. In this 

sense we refer to them as “feature concepts” and denote them with Z. The 

features of the feature concept “fly” refer to the different and specific forms 

of “fly” (e.g., to the specific way an airplane, an insect, a bird, a rocket, or 

a thrown stone is flying). We use the notation F(z) when denoting the 

features of Z. The semantic code of concepts like “bird,” “fish,” and so 

forth, will be termed X, its features F(x). Finally, features shared by 

concepts X and Z are denoted by F(x,z). In using this notation it will be easy 

to outline the hypothetical encoding structure for priming experiments: 

• Feature words such as “fly” and “swim” serve to access the meaning 

of certain features F(z). 

• A congruent word pair is defined by the fact that codes Z and X 

share at least one feature F(x,z) (see Case 1 in section 8.6.1). 

• An incongruent word pair is characterized by the fact that the two 

codes Z and X do not share any common feature. They, however, 

may be connected via a common pathway (see Case 2 in section 

8.6.2). 

In illustrating these assumptions, first consider the way the congruent 

word pair “fly” —“bird” is represented. As a feature concept Z, “fly” 

comprises a variety of features F(z) denoting different forms of flying. One 

of these features refers to the typical form a bird is flying. Consequently, 

the two codes Z (“fly”) and X (“bird”) share a common feature F(x,z). Now 

consider the order of presentation. If “fly” is presented first, then activation 

spreads to all of the features F(z). But because Z and X share a common 

feature, this feature F(x,z) will have already been preactivated by the time 

concept X (“bird”) is encoded. Due to the strengthening effect of preacti¬ 

vation, a congruent pair can be judged faster than an incongruent pair, such 

as “swim”-“bird.” Though a potential feature of some birds, “swim” is a 

typical feature of “fish.” Accordingly, “swim” and “bird” will not share any 

features but instead may be connected via a common path, as shown in 

Fig.9.5. The smaller the degree of interconnectedness between X and Z, the 

smaller will be the effect of preactivation. As a result, incongruent (or less 

congrent) pairs will always require more processing time than congruent 

pairs. 
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FIG. 9.5. Priming effects depend on the interconnectedness between the prime and 
the primed item. In contrast to “fly,” “swim” is an inefficient prime for “bird.” 
Although some birds can swim, this is not a typical feature for bird. “Swim” is closely 
connected with fish but not with bird. 

Positive priming effects for congruent pairs can be easily explained by 

considering Assumption C in section 8.2. It postulates that the search 

process for a code terminates as soon as indirect activation flows back to the 

source node. In priming experiments the two concepts X and Z are typically 

presented in succession. 

Accordingly, subjects do not know whether or not the second word is 

congruent. We therefore have to assume that the search process terminates 

after the prime (i.e., the first word of a pair) is presented and continues as 

soon as the second word appears. Thus, it is clear that the accelerating 

effect of preactivation can be effective only if the prime and the primed 

concept share common features (see Case 1 in section 8.6.1). The more 

features they share, the more features will be preactivated by the time the 

second concept is encoded and the stronger the priming effect will be. In an 

incongruent pair such as “swim” and “bird” the goal of the search process 
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is to find a common pathway between X and Z. However, the detection of 

a common pathway (see Case 2 in section 8.6.2) will in any case last longer 

than it takes to detect common features. 

9.7.1 Complex Concepts Exert Stronger Priming 
Effects 

Up to now we have shown that the connectivity model is capable of 

explaining priming effects. However, more specific predictions can be 

arrived at if we consider the number of features that the prime and the 

primed item comprise. If the presentation order is X-Z, then concept X is 

the prime and (feature) concept Z is the primed item. If presentation order 

is reversed, then X is the primed concept and Z functions as the prime. 

The extent to which a common feature F(x,z) is preactivated depends on 

how many features the prime comprises. As an example, consider the item 

pair “fly” —“bird,” where feature Z is the prime and X is the primed item. 

Because Z will have been already encoded when X is presented, the extent 

of preactivation of F(x,z) is a function of n(Z). If, however, the presenta¬ 

tion sequence is reversed, then the amount of preactivation F(x,z) receives 

depends on n(X). 

The reason behind this conjecture is obvious, if we consider Equations 

8.2 and 8.3 in section 8.3. There we have shown that, by the end of the 

second activation stage, indirect activation equal to a + b(n - 2) or a + 

bf(n - 2) gathers at the feature nodes of an interconnected code. This 

means that n and interconnection density / determine the amount of 

activation a feature node receives. It is for this reason that the number of 

features the prime comprises is crucial for the extent of preactivation. These 

considerations clearly show that the effectiveness of a prime depends on its 

number of features: The more features a prime comprises, the faster the 

congruency between the prime and the primed concept can be judged and 

the shorter reaction time will be. 

When predicting reaction times in priming experiments, the extent of 

preactivation (as determined by the number of features of the prime) is not 

the only decisive factor. What influences reaction time is also the number of 

features of the primed concept itself. The more features the primed item 

has, the faster indirect activation (strengthened by preactivation) will flow 

back to its concept node and the shorter reaction time will be (see Equation 

8.15). 
Now consider the way in which presentation sequence affects reaction 

time and assume that code X has more features than code Z. Is reaction 

time in the presentation sequence X-Z shorter than that in the case of Z-X? 

The following two facts are important in answering this question: First, the 

extent of preactivation depends on the number of features the prime 
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comprises. Second, as the prime is being encoded, activation already 

spreads to the concept node of the concept to be primed, provided common 

features F(x,z) exist, because the activation process within the semantic 

code of the prime does not terminate until the third stage. In the meantime, 

however, activation has spread over the common node(s) F(x,y) to the 

concept node as well as to some features of the concept to be primed. It is 

important to keep in mind that the amount of this activation flowing to the 

primed concept is already a function of the number of features the prime 

comprises. As a result, the concept node of the second code (i.e., the primed 

concept) receives activation already weighted with the number of features of 

the first code (i.e., the prime). When the primed concept is presented, 

preactivation stemming from the prime adds to and multiplies with that 

activation spreading within the semantic code of the primed concept. Due to 

the fact that the concept node is already preactivated and the amount of 

preactivation reflects the number of features of the prime, this quantity 

affects all three activation stages of the second code. Unlike the first code, 

the number of features of the second code does not play a role until the 

second stage of activation. Consequently, the number of features of the 

first code must play a greater role than those of the second. Thus it follows 

that the presentation sequence X-Z (if X is the code comprising more 

features) will generally lead to shorter reaction times than the sequence Z-X. 

In summarizing, the following three hypotheses can be put forward: 

1. The more features the prime comprises, the more effective it is and 

the shorter the duration of reaction time. 

2. The number of features of the primed concept operates to speed up 

reaction time. 

3. Presentation sequence is important. It is the number of features of 

the prime that will have a comparatively stronger effect on reaction 

time. 

The relative importance of these hypotheses depends primarily on the 

quantitative relationship between n(X), n(Z), and the number of common 

features n(X,Z). If, for example, in the presentation sequence Z-X, n{Z) 

and n(X,Z) are small and n(X) is comparatively large, the enhancing effect 

of n(X) may outweigh the effects of n(Z) and n(X,Z). 

These hypotheses hold true both for congruent and incongruent pairs. 

The only difference is that the coding structure of congruent pairs corre¬ 

sponds to Case 1 (described in section 8.6.1), whereas that of incongruent 

pairs corresponds to Case 2 (section 8.6.2). As we saw in section 8.6, the 

predictions derived from Case 1 also apply to Case 2. However, there is 

little chance of empirically describing the complex coding structure of Case 

2. As a result, it would be extremely difficult to indicate to what degree the 
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common pathway between the two codes Z and X is preactivated. The 

uncertainty resulting from the unknown geometry of the common pathway 

may lead to a strong weakening of the predicted effects. 

Using the sample of concepts described in section 9.4, the hypotheses 

outlined here were tested in an experiment by Kroll and Klimesch (1992). In 

testing our hypotheses, one important precondition required that the 

semantic codes of congruent pairs share common features. Accordingly, for 

congruent pairs such as “lark”-“sings” only those features were selected 

that indeed were components of the respective concepts. 

The features of incongruent pairs stem from other concepts of the same 

sample of data. Incongruent pairs do not share common features but in all 

probability are connected by common pathways. Variable frequency of 

attributes (FOA; Experiment 1 in Klimesch, 1987), which represents the 

percentage of times a feature was listed in response to its corresponding 

concept, was used in an attempt to separate the effects of feature frequency 
from the effects of NOA. 

The results of the priming experiment (Experiment 2a in Kroll & 

Klimesch, 1992) are summarized in Table 9.8. In supporting Hypothesis 1, 

the data indicate that concepts X with many features generally lead to 

stronger priming effects. As could be expected in accordance with Hypoth¬ 

esis 2, the number of features of X speed up reaction time even in the case 

concept X has been presented after feature Z (see condition Z-X in Table 

9.8). The results of an analysis of variances support this interpretation and 

show the highly significant influence of NOA and the significant influence 
of presentation sequence. 

It should be noted that variable NOA refers to concepts X, but not to the 

feature concepts Z. Because there were no estimates of NOA for concepts 

Z, Hypothesis 3 can only be tested indirectly. In doing so, we assume that 

TABLE 9.8 
Mean Reaction Times in the Semantic Congruency Task of Experiment 2 

Sequence of Presentation 

Congruent Pairs 
Concept-Feature 

X-Z 

Feature-Concept 

Z-X NOA FOA 

low (3.42) low (32) 1002 1115 

low (3.23) high (60) 907 1118 

high (4.41) low (30) 904 1012 

high (4.14) high (61) 904 993 

Note: NOA, number of attributes; the values in parentheses give the mean rating values; 

FOA, frequency of association; the numbers in parentheses show the mean percentage with 

which a feature was listed in response to the respective concept. Data from Kroll and Klimesch, 

1992, Memory and Cognition, 20, p. 197. Copyright © 1992 by Psychonomic Society. 

Reprinted with permission. 
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feature concepts Z are, in comparison to concepts X, either more hetero¬ 

geneous and therefore less interconnected (e.g. “fly” and its different 

meanings), or have fewer features. For example, the feature concept 

“yellow” obviously has fewer features than the concept “canary.” Given this 

interpretation, the longer reaction times in presentation condition Z-X (as 

compared to X-Z) are in accordance with Hypothesis 3. 

9.8 THE CONNECTIVITY MODEL AND THE ENCODING 
OF PICTURES 

Early experimental psychologist (Kirkpatrick, 1894) understood that pic¬ 

tures are remembered more readily than words, as do cognitive psycholo¬ 

gists (Paivio, 1971, 1976; Shepard, 1967; Standing, 1973; see also the 

extensive review in Yuille, 1983). The question, as to how this basic finding 

(generally described as “picture effect” or “picture superiority effect”; cf. 

Madigan, 1983; D. L. Nelson, Reed, & Walling, 1976) may be explained, 

has led to a variety of different theoretical approaches. The most important 

approaches are the dual coding theory, the discrimination hypothesis, the 

concept of encoding depth, and representational approaches (cf. see the 

review in Madigan, 1983). 

9.8.1 Traditional Approaches Explaining the Picture 
Effect 

Within the framework of his dual coding theory, Paivio (1971, 1976; Paivio 

& Csapo, 1973) assumed that pictures — like concrete words but in contrast 

to abstract words —are represented by a pictorial as well as a verbal code. 

Thus, according to Paivio, the picture effect is due to the double encoding 

of pictures in the visual and verbal system. 

The discrimination hypothesis proceeds from the assumption that it is the 

ability to discriminate more easily between pictures that makes them 

superior in memory performance. Comprising much more information than 

words, pictures offer not only more retrieval cues in a free recall task, but 

also more clues with which to differentiate between targets and distractors 

in a recognition task (R. E. Anderson, 1976). 

According to the concept of encoding depth (Craik & Lockhart, 1972), it 

is assumed that pictures are more deeply encoded and access semantic in¬ 

formation more quickly and easily than words (D. L. Nelson, 1979; D. L. 

Nelson, Reed, & McEvoy, 1977). We deal with this notion more closely 

within the framework of visual-semantic memory models (refer to section 

9.8.3). 

Representational hypotheses attempt to explain the picture effect by the 

specific characteristics of the encoding format for pictures. They ultimately 

lead to the well-known dispute of whether pictures are represented by 
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analagous codes and whether verbal linguistic information is encoded in the 

form of propositional codes (cf. the review in Anderson, 1978; Kosslyn, 
1981; Pylyshyn, 1981). 

9.8.2 The Connectivity Model and the Picture 
Effect 

The connectivity model gives a very simple explanation of the picture 

superiority effect. Pictures are essentially much richer in information than 

words and it therefore must be assumed that picture codes are much more 

complex and comprise more coding components than word codes (Mandler 

& N. S. Johnson, 1976). According to the connectivity model, the high 

complexity of visual codes is the very reason that they are not only 

processed faster but also retained better in memory. As we already know 

from chaps. 8 and 9, complex codes are remembered more easily, forgotten 

more slowly, and processed more rapidly. Thus, in assuming that pictures 

are represented by codes richer in information than those of words, the 

connectivity model leads to the following three predictions: 

1. Pictures are remembered more easily than words (picture superi¬ 
ority effect). 

2. Pictures are less likely to be forgotten than words. 

3. Pictures are processed faster than words. 

The superiority of pictures over words is a general principle that holds 

true for free recall as well as for recognition tasks (review in Madigan, 

1983). Priming experiments (Kroll & Ramskoff, 1984) also support the 

notion of the superiority of visual encoding. In addition to these classic 

findings, Paivio (1976) was able to show that concrete words are remem¬ 

bered more easily than abstract words, and that visualized (concrete) words 

are more easily remembered than nonvisualized words. The imagery 

instruction requires the subject to imagine the object denoted by a 

particular word. According to Paivio (1971), imagery effects can be ranked 

on a hypothetical scale. On this scale, pictures are ranked highest, concrete 

words are second, then nonvisualized concrete words, and finally abstract 

words. According to the connectivity model, imagery effects can be 

explained by the complexity of the visualized code. If we follow Paivio’s 

idea that visualized words are represented by a more complex (because dual) 

code than nonvisualized words, and if we furthermore proceed from the 

assumption that concrete words comprise more features than abstract ones 

(see the results reported in Toglia & Battig, 1978, and Experiment 1 by 

Klimesch, 1987), then the results arrived at by Paivio are entirely consistent 

with the predictions of the connectivity model. 

Section 4.3 argued that “forgetting” can be best understood by a gradual 
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loss of individual code components. The effect of this gradual loss depends 

on the number of features (or components) a code has. As compared to a 

code with only a few features, the loss of some features will have only a 

small effect if the degrading code comprises many features. Consequently, 

a picture code will be more resistant to forgetting than a word code. This 

interpretation is confirmed in an experiment by T. O. Nelson, Metzler, and 

Reed (1974) in which recognition performance for pictures and verbal 

descriptions was tested immediately after presentation and following a 

retention interval of 7 weeks. T. O. Nelson et al. (1974) found that after 7 

weeks only 10976 of the pictures but more than 20% of the verbal 

descriptions were forgotten. Similar results had already been discovered by 

Kirkpatrick (1894) and Calkins (1898) in free recall tasks using words and 

real objects as stimuli. 

The results of semantic decision experiments in which concepts (such as 

“eagle,” “trout,” etc.) are presented as words and pictures (or line drawings) 

have shown repeatedly and consistently that pictures can be judged much 

faster than words (Guenther & Klatzky, 1977; Hoffmann & Klimesch, 1984; 

Klatzky & Stoy, 1978; Klimesch, 1981, 1982a; Pellegrino, Rosinski, Chiesi 

& Siegel, 1977). As the results depicted in Fig. 9.6 show, pictures are, on 
average, processed at about 170 ms faster than words. 

FIG. 9.6. Semantic decision latencies for pictures and words. On average, pictures are 
processed about 170 ms faster than words. For pictures and words, the difference 
between positive and negative decision latencies is about 35 ms. Data from Klimesch, 
1981, Zeitschrift fur Experimentelle und Angewandte Psychologie, 28, 609-636. 
© 1981 by Hogrefe. Reprinted with permission. 
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The hypotheses derived from the connectivity model are thus reliably 

confirmed. Though other theories (such as the dual coding theory, the 

discrimination hypothesis, the concept of encoding depth and representa¬ 

tional approaches) accord with Predictions 1 and 2, none of these 

traditional theories is capable of simultaneously explaining all of the 

aforementioned three predictions. This underlines the special status of 

Hypothesis 3 and points to the crucial importance of the general notion 

that complex information may be processed faster than less complex 
information. 

9.8.3 The Connectivity Model and the Semantic 
Encoding of Pictures and Words 

In discussing the validity of the dual coding theory, one must distinguish 

between trivial and nontrivial aspects. The trivial aspects refer to the fact 

that pictures and acoustically presented words are encoded in different 

perceptual systems. Inspite of this, however, we can easily name pictures 

and imagine the objects described by words. It is this fact that brings us to 

the nontrivial aspect of the dual coding theory, namely, what are the 

processes and structures that form the bridge between the visual and the 

verbal system? 

The dual coding theory assumes that both systems, though operating 

independently, enable a mutual activation of visual and verbal information. 

The independence of both systems not only applies to the perceptual but 

also to the semantic level of encoding: Visual and verbal semantic infor¬ 

mation is represented in two distinctive and independent memory structures 

(Bleasdale, 1983, p. 205). 
An alternative theory was suggested by Potter (Potter & Faulconer, 1975; 

Potter, So, von Eckardt, & Feldman, 1984), Nelson (D. L. Nelson, 1979; 

D.L. Nelson, Reed, & McEvoy, 1977), Klimesch (1982a, 1982b, 1982c), 

Hoffman and Klimesch (1984), Jolicoeur, Gluck, and Kosslyn (1984), and 

Snodgrass (1984). In their view, pictures and words use different routes to 

access a common semantic network. Empirical results supporting this view 

are discussed in detail elsewhere (for an extensive review see Te Linde, 

1982). We do not intend to give another review of these results, but instead 

focus on an argument of special importance to the way in which words are 

accessed in semantic memory. 
Section 9.2 emphasized that the perceptual word code gives no insight 

into its meaning per se. This, in turn, leads to the assumption of the 

presence of specific access points in semantic memory, which we have 

termed concept nodes. In sharp contrast to a word, the perceptual code of 
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a picture does provide insight into the meaning of a picture. For pictures, 

but not for words, there is a gradual transition between the perceptual and 

the semantic code. For example, consider a semantic judgment task of the 

“Is X a Y?” in which pictures of animals and tools are presented, and in 

which subjects are asked to give a yes response whenever a picture 

represents an animal (Klimesch, 1981, 1982a, 1982c). The recognition of a 

single visual feature such as an eye, a feather, or a leg provides evidence that 

the presented picture is an animal. Thus, perceptual features of a picture 

provide direct access to semantic information (Flores d’Arcais & Schreuder, 

1987; Zie/31er & Hoffman, 1985). Consequently, it is impossible to make a 

clear distinction between visual and semantic information (Klatzky & Stoy, 

1978). As depicted in Fig. 9.7, pictures, in contrast to words, do not depend 

on specific access points or concept nodes in order to activate semantic 

information. 

Figure 9.7 shows that, in contrast to words, the perceptual code of 

pictures has direct access to the features of a common semantic network. 

On the one hand, this assumption explains that pictures are processed 

semantically faster than words and, on the other hand, that it generally 

takes longer to name a picture than a word (Potter & Faulconer, 1975; but 
see also Jolicoeur et al., 1984, Experiment 1). 

If we assume that a visual code (e.g., consider the code for “eagle”) 

feather 

FIG. 9.7. Visual and verbal semantic information is stored in a single common 
network. However, the access routes differ for pictures and words. Pictures have direct 
access to semantic features whereas words have direct access only to the concept node. 
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consists of a structure of interconnected subcodes that represent individual 

picture components (e.g., eyes, feathers, wings, etc.), then we find an 

explanation not only for the gradual transition between visual and semantic 

information, but also for the effortless visualization of concepts and their 

semantic features. 

It is a consequence of the assumptions discussed earlier that concept 

nodes serve primarily as access nodes for the verbal system (cf. the 

discussion on functional holistic codes in section 9.2.1). In considering the 

enormous complexity of semantic knowledge in comparison to the limited 

number of words contained in a language, it becomes evident that semantic 

memory holds far more codes having no link to a word code than codes that 

actually do possess a direct link. Thus, semantic memory stores far more 

concepts not directly related to the verbal system. 

The model outlined in Fig. 9.7 may also be used to explain multilin¬ 

gualism (Snodgrass, 1984). Here, the decisive notion is that the meaning of 

corresponding words in different languages (e.g., “animal” and the German 

word Tier) is in most cases similar, but by no means identical. For example, 

in contrast to Tier, “animal” stands primarily for “mammal.” Therefore, we 

assume that the semantic codes for Tier and “animal” share many common 

features but have two different concepts nodes. One concept node is linked 
with Tier, the other with “animal.” Thus, according to the connectivity 

model, learning a new language, on the one hand, means establishing new 

concept nodes and, on the other hand, elaborating new semantic features 

that cover the special meaning of the foreign concept in relation to the 

native concept. Thus, the meaning of words in different languages is 

represented by a common semantic network to which each language has a 

different and distinctive access. 



The Simulation Program 
CONN1 

This chapter and the next are concerned with the implementation of the 

connectivity model. In this chapter a simulation program (CONN1) is 

described that was developed in colaboration by Winkler (1991). The next 

chapter discusses the possible neurophysiological basis for the connectivity 

model. 

The simulation of the connectivity model provides insight into the way in 

which the model deals with rather complex networks. Furthermore, in 

implementing the model we encounter new problems that will show whether 

or not the assumptions described thus far must be modified in order to 

support the predictions of the connectivity model. In all cases requiring 

modifications, additional assumptions were adopted that do not contradict 

but supplement the assumptions already described in chaps. 8 and 9. 

10.1 ARGUMENTS FOR MODIFYING ASSUMPTIONS 

Winkler drew attention to three problems: the delta problem, the problem 

of preventing echoes between codes, and the halt problem. These problems 

are discussed in the next sections. The way in which CONN1 deals with 
these problems is described in section 10.2. 

10.1.1 The Delta Problem: Asynchronous Activation 
Stages 

General zero activity in the network is considered a theoretical neutral 

status at the beginning of a search process (Assumption 7). However, 
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priming and inhibiting processes will occur during the spreading activation 

process. Preactivated and inhibited nodes exert a strong effect on spreading 

activation. Due to different activation values, Stage 3 or Stage 2 may 

propagate asynchronously. Because the nodes do not “know” when a stage 

is finished, they will send out activation back to the source node and to 

other codes. These asynchronous activation stages may trigger additional 

processes. It is thus necessary to define a procedure that allows to 

coordinate different activation processes within a certain activation stage. 

In trying to overcome this problem, one may define a critical waiting time 

delta. Within that interval the activation of asynchronous processes is 

allowed to accumulate. Activation is passed on only after delta is exceeded. 

However, depending on the choice of delta, n activations received by a 

particular node may trigger up to n different activation processes. Activa¬ 

tion speed might vary considerably between different processes, so this 

problem of unforeseeable reproduction of search processes can hardly be 

overcome by a “right” choice of delta, because this choice does not exist. 

It should be emphasized that the delta problem is not only due to 

preactivation and inhibition. Even within a single code, Stage 3 activations 

may spread asynchronously if the degree of interconnections varies. De¬ 

pending on the exact geometry of overlapping codes, Stage 1 activation may 

also propagate with different speeds into neighboring codes. 

In considering code X in Fig. 10.1, assume that node x2 is preactivated 

with strength 1, whereas the remaining nodes xl, x3, and x4 are not 

activated (i.e., are activated with zero). If a search process starts at time 0 

at the source node x with strength 1, Stage 1 will be received by xl, x2, x3, 

and x4 at time 1. The activation value of x2 will be 2, whereas xl, x3, and 

x3 x2 y2 

FIG. 10.1. The delta problem refers to the fact that asynchronous activation stages 
may be triggered if nodes are already preactivated. In this example we assume that x2 

is preactivated when activation starts to spread from x. 
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x4 will be activated by only half of that amount. Thus, Stage 2 will proceed 

from x2 twice as fast as from the remaining nodes. As a consequence, xl, 

x3, and x4 receive Stage 2 from x2 at time 1.5 and send out activation back 

to x and at the same time to connected or overlapping codes with strength 

3. In our example a search process is triggered from xl to y3 at time 1.5. It 

should be noted that already at time 1 activation was sent to y3 as a result 

of Stage 1 activation spreading from x. Later, at time 2, all the other Stage 

2 activations will be received and new activation processes will be initiated 

that spread back to node x and to the environment (xl sends out a second 

search process to code Y!). 

10.1.2 The Problem of Preventing Echoes Between 
Codes 

Assumption C3 was suggested in an attempt to prevent echoes between 

codes. However, when considering more complex cases such as overlapping 

codes sharing more than one node (Fig. 10.2), it can be seen that 

Assumption C3 is not capable of preventing echoes stemming from Stage 2. 

As an example, assume that node x2 in Fig. 10.2 is preactivated. In this 

case, a search process initiated in x and entering code Y via Stage 1 from xl 

to y2 will return to code X (from y2 to x2) as Stage 2 activation and will 

trigger a new search process. 

x3 y3 

FIG. 10.2. Echoes between codes may occur if a common node such as x2 is 
preactivated and if cyclic pathways exist between the common node and code Y. 
Activation is assumed to spread from x. 
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10.1.3 The Halt Problem 

Consider the symmetric example in Fig. 10.3. Here, search processes 

starting simultaneously in A and B will meet in c2. Because at this time both 

connections a2-c2 and b2-c2 are inhibited, the search processes may only 

propagate into code C. Assumption C3 prevents Stage 3 activation, and as 

a result the search process comes to a complete standstill. In this example 

the path between A and B will never be found. If node c2 would be a 

hierarchical node, not connected to code C, activation would also stop at 

c2. But this latter case is in accordance with the basic assumptions of the 
connectivity model (see section 8.3 and Fig. 8.3). 

c 

© 

FIG. 10.3. The halt problem occurs in the rare case of two search processes spreading 
in completely symmetric structures. Search processes starting at a and b meet at c2 and, 
according to Assumption C3, terminate without sending an echo back to a or b. 

10.2 THE SPREAD OF ACTIVATION IN CONN1 

Winkler proceeded from the idea that a node —as an intelligent processing 

unit —waits to send out other stages of activation subsequent to a distrib¬ 

uted stage until it has received all of the activations necessary to complete 

this stage. Distributed means that the activations of a certain stage are 

initiated in more than one node. A good example for this is the spread of 
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activation in Stage 2. A more specific case refers to Stage 1 activation 

processes spreading into an overlapping code sharing two or more nodes 

(Fig. 10.2). 

This approach renders the delta problem meaningless, because there is no 

need to define a critical waiting time. Any node is provided with all 

information necessary to determine which activations have to be awaited 

before sending out activation. Neglecting the possibility of cyclic structures 

for the moment, CONN1 prevents the multiplication of search processes. 

The echo problem is also eliminated. Every node of a certain code can 

check to see to which code(s) connected nodes belong. No activation is sent 

back to those nodes that belong to codes where activation originates. 

Any node knows which type of activation stage is to be sent to which 

other node(s) in a given situation, so the halt problem also becomes 

meaningless within this approach. Consequently, Assumption 5, which is 

responsible for the halt problem and states that links are inhibited after 

carrying activation, is no longer necessary. 

10.2.1 Sending and Receiving Information 

Any node is capable of sending and receiving activation. Accordingly, we 

distinguish between the two functions SEND ACTIVATION and RE¬ 
CEIVE ACTIVATION: 

SEND ACTIVATION (stage, 

send time, 

act node, 

to node, 
primary set, 

strength) 

/* activation stage 

/* time of sending activation 

/* sender 

/* address 

/* nodes which in a given situation 

received activation from outside 
the code 

/* activation strength 

RECEIVE ACTIVATION (stage, 

receive time, /* time of receiving 

activation 

from node, /* act node from function 

SEND ACTIVATION 

act node, /* node receiving activation 
primary set, 

strength) 

As the first argument of each function shows, the information about the 

stage of activation must be enclosed, whenever activation is processed (i.e, 



THE SPREAD OF ACTIVATION IN CONN1 179 

sent or received). We distinguish between four different stages of activa¬ 
tion: 

Stage 0: A code either receives source activation (i.e., is activated from 

STM) or is activated by a connected code. 

Stage 1: A node activated by Stage 0—which thereby becomes the 

primary node of its code —sends activation to the remaining nodes of that 

code. In case of overlapping codes Stage 1 is triggered by Stage 2. 

Stage 2: A node x(i) activated by Stage 1 sends activation to and receives 

activation from the neighboring nodes x(j). Stage 2 waiting period is 

finished for node x(i) when all activations from these neighboring nodes 

have been received. 

Stage 3: Activation flows back to the primary node(s). 

Any activation defined by SEND ACTIVATION arrives after t = 

1/strength at the address and is received by function RECEIVE ACTIVA¬ 

TION. Activation strength always equals the sending node’s activation 

value ACT (See Assumption Bl). 

Within a given code, the primary set parameter holds that set of nodes 

first activated and that have to send Stage 1. This set contains more than 

one node only if overlapping codes share two or more nodes. 

10.2.2 Information Accessible to a Node 

In the following we describe the information stored in a node and that is 

available to a node. Every node holds static structural information defining 

the geometry of the network: 

1. The name of the node. 

2. Whether or not the node is a source node. 

3. Whether or not the node is a hierarchical node. 

(A feature node is assumed if the node is neither a source nor a 

hierarchical node.) 
4. A linklist defining all those nodes that are linked with a particular 

node: 
links (node) = <nl,n2,n3 . . .> 

Dynamic information changes with every activation received. It refers to 

the state of the node, as defined by 

1. act, holding the node’s activation value, 

2. activation list = <order 1, order 2. . . .> 

order k = (waiting list, order list) 
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waiting list = <wait item 1, wait item 2. . . .> 

wait item k = (node, stage) 

order list = < order item 1, order item 2 . . . > 

order item k = (node, stage) 

The algorithm working on activation list is relevant only in the case of 

distributed stages. At the beginning of a search process the activation lists 

of all nodes are empty. Instead of a detailed description of the complex 

activation logic we refer to Fig. 10.1 and discuss an example in section 

10.2.3. 

10.2.3 Functions Accessible to All Nodes 

Determining the node from which activation is to be expected and to which 

activation is to be sent requires a series of functions that dynamically check 

the local geometry of the network. 

CONNECTED (nl, n2): Checks whether two nodes nl, n2 are connected 

to each other. It yields a positive result if nl is in the link list of node n2 

(and, of course, if n2 is in the link list of nl). 

COMMON CODES (nl, n2): Checks whether two nodes belong to one or 

more common codes. It yields a positive result if there is at least one source 

node connected to nl and n2. 

CONNECTED TO SET (nl, N): Checks whether node nl is connected to 

a node of set N. 

COMMON CODES TO SET (nl, N): Checks whether node nl has a 

common code with a node of set N. 

It is important to note that the idea of local processing is not violated by 

these functions. Each node may call them only with parameters available to 

it by RECEIVE ACTIVATION or by its own static informations. As an 

example we refer to Fig. 10.1. Again assume that node x was activated from 

STM. Function RECEIVE ACTIVATION will have the following param¬ 

eters: 

RECEIVE ACTIVATION ( type = stage 0 

receive time = 0 

from node = STM 

act node = x 

primary set = (j / not used for stage 0 

strength = 1 ) 
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As the act node, node x determines the processing steps to be carried out: 
Sending Stage 1 to all the members of a set N containing the nodes in the 
same code. 

N = { n(i) | CONNECTED (act node, n(i)) and 
COMMON CODES (act node, n(i)) } 

Note, that act node = x and N = [xl, x2, x3, x4j. 
As a result, Stage 1 is sent to nodes xl, x2, x3, and x4. Thus, function 

SEND ACTIVATION takes the following form: 

SEND ACTIVATION ( type = stage 1 
send time = 0 
act node = x 
to node = xl; [Function SEND ACTIVATION 

also is carried out for x2, x3, x4] 
primary set = (x) 

strength = 1 ) 

Now consider node xl, which receives Stage 1 at time 1. Function 
RECEIVE ACTIVATION shows the following form: 

RECEIVE ACTIVATION ( type = stage 1 
time = 1 

from node = x 
act node = xl 

primary set = fx) 
strength = 1 ) 

Now, two different types of operations must be carried out by node xl. On 
the one hand, stage 2 activations are sent to the neighboring nodes of the 
same code: 

N = { n(i) | CONNECTED (act node, n(i)) and 
COMMON CODES (act node, n(i)) and 
COMMON CODES (from node, n(i)) } 

Note, that act node = xl, from node = x and N = (x2, x3) 

SEND ACTIVATION ( type 
send time 
act node 
to node 

primary set 
strength 

stage 2 
1 
xl 
x2 (Function SEND ACTIVATION 

also is carried out for x3) 

(x) 

1 ) 
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On the other hand, Stage 2 activations from the remaining nodes of set N 
are expected and activations are planned for to be carried out for that time 
when the last of the expected activations will arrive: 

waiting list = <(x2, Stage 2), (x3, Stage 2)> 
order list = <(x, Stage 3), (y3, Stage 0)> 

Note, that x is the from node and y3 is the only node for which 
CONNECTED (act node, n(i)) and 
not COMMON CODES (act node, n(i)) 

yields a positive result. 
Waiting list and order list are inserted as order 1 into state of xl. 

order 1 = (waiting list, order list) 
activation list = < order 1 > 

Considering the fact that two or more search processes can be active at 
the same time and may meet at an individual node makes clear why an 
activation list may contain more than one order k entry. Matching Stage 2 
activations arriving from x2 and x3 cancel corresponding waiting items. 
Whenever a waiting list is deployed by this kind of operation, the order 
items are executed. In our example the activations from x2 and x3 will be 
received simultaneously at time 2, but due to preactivations they may arrive 
at different times. In this case, node xl waits until the slowest activation 
arrives. 

As a final example, consider Fig. 10.2, which shows two codes 
X and Y sharing two nodes xl and x2. As before, we assume that a 
search process was initiated at node x. Here, another timing problem is 
given by the asynchronous Stage 1 activations from code X to code Y. 
As compared to xl, node x2 is connected to more nodes in code X. 
Consequently, x2 will send stronger and faster Stage 1 activations to y 
and y2 than xl does. In order to prevent the multiplication of the search 
process in y and y2, CONN1 again uses the waiting mechanism. We do not 
want to go into details here and therefore mention only some of the 
problems that can be easily handled on the basis of the assumptions 
described so far. 

Determining the nodes from which additional Stage 1 activation is to 
be expected is nontrivial. This is the reason why the parameter “primary 
set” exists. Node y2 plans to send Stage 0 and Stage 1 to other codes — 
provided there are any—and Stage 3 back to those nodes Stage 1 came 
from (from nodes). Additionally y2 plans Stage 2 activations. Stage 2 is 
not sent to all connected nodes within code Y, the from nodes being 
excluded. We deal with sets of nodes rather than with single nodes here, and 
therefore some checks require the functions CONNECTED TO SET and 
COMMON CODES TO SET instead of CONNECTED and COMMON 
CODES. 
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10.3 CONN1 AND SPREADING ACTIVATION IN A SIMPLE 
SEMANTIC NETWORK 

The examples described thus far allow us to understand the basic structure 

of CONN1. A more detailled description can be found in Winkler (1991). 

Here, CONN1 is discussed on the basis of a simple semantic network, 

shown in Figs. 10.4-10.8. It consists of the two superordinate categories 
animals and vehicles. 

Within each category, different concepts are represented by overlapping 

and interconnected codes (chap. 9). Numbers in the white square of each 

node reflect the activation state at that time when a search process 

terminates. A black circle denotes a feature node and an additional white 

ring denotes a concept node. Interconnections between feature nodes are 

shown as solid lines, whereas interconnections between a source node and 

its features are shown as dashed lines. 

Between the two categories, the two networks are linked only by 

hierarchical nodes. Hierarchical nodes represent very heterogenous con¬ 

cepts such as “move” and “wing,” which have different meanings when 

placed in the context of category animal as opposed to vehicle. As an 

example, consider that the meaning of concept “wing” should be retrieved. 

In this case, WING (which represents the source node of the semantic code 

for wing) is used as an access node, and activation spreads to the different 

meanings of wing. In our example, two different meanings are represented. 

WING1 stands for “wings of birds” and comprises the two features “typical 

form of a wing” [f(wingl)] and “feathers.” WING2, on the other hand, 

refers to “wings of an airplane” and consists of the two features “typical 

form of a wing” [f(wing2)] and “aluminum.” According to the connectivity 

model, the meaning of “wing” is retrieved if at least the standard echo Is is 

received at WING1 or WING2. This situation is shown in Fig. 10.4. 

Due to the passive processing properties of hierarchical nodes, activation 

never spreads from the animal network to the vehicle network or vice versa. 

Fig. 10.5 gives an example of a search process starting at BIRD and 

terminating at time 2.25 after the standard echo has been received. The 

source node of the highly overlapping code Canary carries strong activa¬ 

tion, code MOVE1 is activated with Stage 1, but none of the concepts in 

category vehicle has received activation. When comparing Figs. 10.4 and 

10.5 we see that the highly interconnected code “BIRD” can be searched 

much faster than “MOVE”. 

In order to demonstrate how strong and fast a search process spreads in 

a more complex network, we assume that a search process starts simulta¬ 

neously at “CANARY” and “BIRD.” This case corresponds to a semantic 

decision task in which a subject has to judge whether or not a canary is a 
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FIG. 10.4. A search process was started at the source node WING. The numbers 
reflect the activation pattern after the standard echo was received by WING. 

bird. As Fig. 10.6 shows, the search process terminates with a positive result 

already at time 1.63 when the source node BIRD receives activation from 

CANARY. 

The codes representing canary and bird share four features. In contrast to 

this, the codes for bird and animal do not share a single feature. 

Consequently, judging the question “Is a bird an animal?” will require more 

processing time than in the case of “Is a canary a bird?” This is indeed the 

case, as Fig. 10.7 shows. 

As a final example, consider a subject starting a general search process 

(refer back to section 8.7.1 for the distinction between general and specific 

search processes) in order to judge the question “Is a jet a bird?” In this 

case, which is shown in Fig. 10.8, no activation flows from the animal 
network to the vehicle network or vice versa, and the search process 

terminates with a negative result after all of the activation processes are 

carried out. Nonetheless, activation accumulates at the common nodes 

“MOVE” and “WING.” This information could be used, for example, in 

evaluating the outcome of a specific search process that was initiated in 

response to the question “Are there any similarities between a jet and a 

bird?” The answer would be, “Yes, both move and have wings.” 



FIG. 10.5. A search process was started at the source node BIRD. The numbers 
reflect the activation pattern after the standard echo was received by BIRD. 

TIME: 1.63 STAGE 1 received by node BIRO 

FIG. 10.6. A search process was started simultaneously at the source nodes BIRD and 
CANARY. The numbers reflect the activation pattern after activation from CANARY 

was received by BIRD. 
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FIG. 10.7. A search process was started simultaneously at the source nodes BIRD and 
ANIMAL. The numbers reflect the activation pattern after activation was received by 
ANIMAL. 

FIG. 10.8. A search process was started simultaneously at the source nodes BIRD and 
JET. The numbers reflect the activation pattern after all of the activation processes 
were carried out. 
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Representational Assumptions 
and their Possible Neural 
Bases 

The ideas presented in this chapter are based on two arguments: First —as 

emphasized repeatedly —a comprehensive memory theory requires explicit 

and specific representational assumptions. Second, the physical bases of 

memory are physiological processes in the neural network of our brains. 

Thus, when pursuing the representational problem, we finally confront the 

question of how information is represented or coded in the brain. This 

interdisciplinary approach which is rather vaguely described under neuro¬ 
sciences, is the connecting link between memory psychology, cognitive 

psychology, artificial intelligence, and neurophysiology. 

In illustrating the crucial problems inherent to this approach, hypothet¬ 

ically consider an “ideal situation” that would provide us with all of the 

necessary neurophysiological knowledge to evaluate the assumptions of 

memory theories. Needless to say, we are far from achieving this goal. But 

even in the case where this ideal situation could be realized, a neurophy¬ 

siological testing of memory theories would be extremely difficult. 

Such an attempt would encounter the problem of (neural) implementa¬ 

tion, that is the question of whether or not the properties of neural 

information processing pose restrictions on cognitive processes. In order to 

explain this issue, first consider the problems that arise when a cognitive 

model is implemented by a simulation program. By implementation we 

mean the level of physical technical realization of a model described on an 

abstract level. The implementation converts relevant assumptions and 

algorithms into a concrete computer architecture and programming lan¬ 

guage. By that procedure of implementation, the theory to be modeled is 

enriched with additional representational assumptions, which result from 
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the concrete technical features of the computer architecture and program¬ 

ming language. 
The decisive dispute now is whether or not the level of implementation 

has any effect on the abstract model level. In other words: Is the type of 

implementation indifferent to the simulation of a cognitive model? Ac¬ 

cording to the traditional view in cognitive psychology, the issue of 

implementation is not only beyond its scope, but does not even affect 

cognitive modeling (e.g., J. R. Anderson, 1987, and the confrontation 

between Broadbent, 1985, and Rumelhart & McClelland, 1985). This view 

may be correct as long as time-critical processes are not of crucial interest. 

As an example, it is possible to simulate a particular semantic network 

theory by using different programming languages with comparable results. 

If, however, time-critical processes (e.g., search processes in the semantic 

network) and their modeling under real time demands are of interest, then 

the type of implementation (i.e., the type of computer architecture and 

programming language) will play a decisive role. In order to solve a 

mathematical task, one may use paper and pencil, a calculator, or a 

personal computer. Solving this task may in itself be independent of the 

technical aid or implementation. But the time we need to perform this task 

is of course affected by the type of technical aid we use. If we consider that 

in psychology and especially in cognitive psychophysiology time-critical 

variables such as reaction times and the variety of different EEG parameters 

play an important role, then one easily arrives at the conclusion that the 

issue of implementation must not be excluded from our field of research. 

In an analogous sense, the problem of neural implementation refers to 

the question of whether or not the properties of neural information 

processing pose restrictions on the abstract level of cognitive information 

processes. The problems underlying the two types of implementations are 

very similar to each other. Thus, it is a logical consequence when those 

researchers who regard implementation as an irrelevant technical detail are 

also sceptical about the relevance of neurophysiologically based represen¬ 

tational assumptions. On the other hand, those researchers who believe that 

implementation is an essential part of cognitive modeling will readily accept 

the importance of the neural implementation problem. This latter view, 

which is also inherent to a variety of different connectionist and neural 

network models, will serve as a guideline for the following sections of this 
chapter. 

The status of neurophysiologically based representational assumptions, 

however, is linked not only to the problem of implementation but also to 

the question of whether or not neural network models are capable of 

representing symbolic (such as semantic) information. As the example of 

connectionist theories demonstrates, most models focus on the level of non 

symbolic (such as elementary sensory) information processing. In contrast 
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to traditional symbol-processing models (e.g., ACT or ACT*), connec¬ 

tion^ models (refer to the series of articles in Cognition, 1988, Vol. 28, or 

the overviews in J. A. Anderson & Rosenfeld, 1988, or Hinton & J. A. 

Anderson, 1989) proceed from networks whose nodes are interpreted as 

“formal neurons” (McCulloch & Pitts, 1943). Formal neurons are inter¬ 

connected according to Sherrington’s well-known divergence/convergence 

principle, and the connections between them can be modified according to 

the Hebb rule (Hebb, 1949). Although connectionist architectures are not 

based on the most recent neurophysiological findings, they were designed 

according to important principles governing neural networks. Therefore, 

these models also became known under the name “neural networks.” The 

extent to which these models —and, hence, also the neurophysiologically 

based representational assumptions, which were adopted —are also capable 

of representing symbolic structures, is still a matter of debate (Fodor & 

Pylyshyn, 1988). 

In summarizing the arguments presented thus far, both types of imple¬ 

mentation problems are to be considered whenever time-critical processes 

and/or subsymbolic structures play an important role. Because the central 

assumptions of the connectivity model refer to time-critical processes, it is 

clear that the issue of neural implementation is of crucial importance. The 

following section, therefore, focuses on the question of whether or not the 

assumptions of the connectivity model appear plausible when compared 

with basic neurophysiological findings. 

11.1 BASIC PRINCIPLES OF NEURAL INFORMATION 
PROCESSING 

The discussion of network models distinguishes between structural and 

processing assumptions. In order to enable a clear comparison between 

neural processing principles and the assumptions of the connectivity model, 

we keep up with this distinction. Thus, we focus first on structural and then 

on processing principles of neural networks. 

11.1.1 Cortical Modules and Interconnection 
Principles 

An interesting fact to start with is the enormous complexity of the cortex, 

which is the region of the brain that probably holds long-term memory 

representations and semantic memory in particular. The number of nerve 

cells in the human cortex is estimated at some 10,000 million (1010), the 

number for the entire brain at some 100,000 million (between 1011 and 

1012). The number of synapses (sites of information transfer between nerve 
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cells) varies between 1,000 and 10,000 per nerve cell (for a comprehensive 

review see Braitenberg & Schiiz, 1991). For the cortex alone a conservative 

estimate identifies at least 1013 different synaptic connections or intercon¬ 

nection sites. 

Each of the 1010 cortical neurons has “only” between 103 and 104 

synapses, so it follows that an individual cortical neuron is not connected to 

all of the remaining neurons of the cortex. This fact is not in accordance 

with connectionist or neural network models, which assume that in a given 

layer every formal neuron is connected to each of the remaining neurons, 

and demonstrates the necessity to assume functionally important subunits 

or a “modular” architecture of the cortex. 

It should be noted that the term module is used in at least two different 

ways. It may be used to denote a purely theoretical concept (Fodor’s 

“psychological modules,” e.g., 1983, 1985) or an anatomical substructure of 

the cortical network. In this latter sense, used here, module is synonymous 

with “cortical column.” 

Based on the pioneering research of Hubei and Wiesel (1959; see the 

review in Hubei, 1988), the modular organization and interconnection 

principles of the visual cortex were described in great detail. Although most 

of the principles discussed here were found for the visual cortex, it is 

generally held that they apply also to other areas of the cortex. 

The neocortex and thus each module (cortical column) is organized in six 

horizontal layers. Exceptions are the allo-cortex or archi-cortex (of the 

hippocampus) and the paleocortex (located in medial parts of the temporal 

lobe), which comprise only three layers. Modules appear as vertical columns 

with a height of some millimeters and a radius of a few tenths of a 

millimeter. In the primary visual cortex there are highly specialized modules 

or columns of neurons, which encode the angle of line segments of complex 

visual contours (Hubei, 1988). 

These horizontal and vertical structuring principles give insight into 

important processing characteristics of the cortex (Martin, 1985). The 

neurons in layer IV are the target of afferent fibers, which originate in 

specific nuclei of the lateral thalamus. From layer IV, (sensory) information 

is transmitted to neurons in other layers of the same cortical column. 

Neurons in layers II and III receive their information from other regions of 

the brain. Layers V and VI are specialized for transmitting output infor¬ 

mation to other columns as well as to other parts of the brain. Layer I 

consists primarily of closely interconnected dendrites (apical dendrites), 

which typically originate in lowerlying pyramidal cells. It is generally 

assumed that the EEG (as an extracellular recording method with macroe¬ 

lectrodes attached to the scalp) primarily —but not exclusively — records 

postsynaptic potential changes at the apical dendrites in layer I (see the 
review in Martin, 1985). 
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Two large groups of nerve cells can be distinguished in each cortical 

column: pyramidal cells and stellate cells. Pyramidal cells are excitatory and 

have a pyramid-shaped cell body (hence the name), long axons (which 

transmit information to other regions of the brain), and a very complex 

apical dendritic tree with a “trunk” that is always oriented at a right angle 

toward the surface of the cortex. The amino acids (glutamate or aspartate) 

serve as transmitters. Especially important for their function is the fact that 

cortical pyramidal cells feature “booster zones” at certain points in their 

dendritic tree. These zones serve to strengthen excitatory signals arriving 

from distant regions of the brain by amplifying excitatory postsynaptic 

potentials (EPSPs). One can easily imagine that a certain geometric 

arrangement of booster zones in the dendritic tree will lead to a selective 

strengthening of signals from certain other regions of the brain. 

Stellate cells form a very heterogeneous group of interneurons. There is 

some evidence that stellate cells with vertically oriented axons work 

excitatorily, whereas those with horizontally oriented axons are inhibitory 

and use GABA as a transmitter (Martin, 1985). It is generally assumed that 

stellate cells are especially suited to “local” information processing within a 

cortical column as well as between adjacent cortical columns. With respect 

to this assumption, it is worth mentioning that excitatory stellate cells with 

vertical axons are primarily interconnected with cells of the same cortical 

column, whereas inhibitory cells with horizontal axons are primarily 

connected with cells of neighboring columns. These facts support the 

assumption that GABAergic stellate cells are at least in part responsible for 

a functional independence of cortical columns. 

Cortical columns can therefore be regarded as modules that function 

largely independent of neighboring modules. The concept of a modular 

organization of the brain is based on a work by M. E. Scheibel and A. B. 

Scheibel (1958), in which the structure of the brainstem is described. In 

subsequent decades, further experiments were carried out by Hubei and 

Wiesel (1959), Mountcastle (1978), and Szentagothai (1975). The results of 

this and similar research (see Szentagothai, Hamori, & Palkovits, 1981, pp. 

55-89) indicate that virtually the entire human cortex with its extraordi¬ 

narily large surface area (due to its intensive folding) of approximately 

2,500 cm2 consists of approximately 2.5 million modules. There are about 

10,000 million neurons in the cortex, so the number of neurons per module 

amounts to approximately 4,000. Thus, a single square centimeter of 

cortical surface contains approximately 1,000 modules with approximately 

4 million neurons. One square millimeter comprises approximately 10 

modules with about 40,000 neurons. One module therefore has a diameter 

of approximately .3 mm. The height amounts to approximately 3 mm. 

Cortical modules are connected to each other according to the convergence/ 

divergence principle. Each module sends axonal fibers to other modules and 



192 11. REPRESENTATIONAL ASSUMPTIONS 

is itself the target of converging cortico-corticular connections stemming 

from modules of the same as well as from the contralateral hemisphere. 

This means that modules project in a completely overlapping manner to a 

certain number of other modules (Eccles, 1981). It is important to note that 

these projections are (a) bidirectional (i.e., each module sends axons to a 

connected module and at the same time receives axonal fibers from that 

module), are (b) established by axons of pyramidal cells that function 

excitatorily, and (c) also connect modules that are not adjacent to each 

other. Consequently, this interconnection principle must not be confused 

with the lateral inhibition principle of inhibitory stellate cells mentioned 

earlier, which functions “locally” and affects only adjacent modules. 

11.1.2 Neural Signal Processing 

There are excellent reviews on this topic (e.g., Amit, 1989; Kandel & 

Schwartz, 1985; Llinas, 1989; Thompson, 1985). Instead of attempting yet 

another review, we focus selectively on only those results important for 

evaluating the processing assumptions of the connectivity model. 

Those parts of a nerve cell of crucial importance for signal processing are 

the dendrites (which receive incoming signals), the cell body (or soma, 

which integrates and “sums up” incoming signals), the point where the axon 

leaves the cell body (which is responsible for generating the “output signal,” 

i.e., the action potential), and finally the axon (which enables the action 

potential to move to the presynaptic membrane). The length of an axon 

ranges from a few 10“2 mm up to several centimeters. Branchings of the 

axon are termed collaterals. Typically, synapses are to be found between 

axons and dendrites (axo-dendritic synapses) and between axons and cell 

bodies (axo-somatic synapses). But there are also synapses that exist 

between axons (axo-axonic synapses) and between dendrites (dendro- 

dendritic synapses). 

The action potential is a large and rapid change in voltage across the axon 

membrane that travels down the axon. The voltage change is characterized 

by a quick rise from - 70 to 50 mV (millivolts) and a subsequent decline to 

the level of the negative resting potential of -70 mV. This short lasting 

peak of 50 mV is also known as a “spike.” The action potential originates 

at the axon hillock (i.e., the point where the axon leaves the cell body) and 

traverses the entire length of the axon up to the synaptic cleft, where it ends. 

The amplitude of the action potential remains constant, but the number of 

spikes per time unit, indicating the frequency of the action potential, varies 

in a wide range of approximately 1 Hz to 500 Hz. Thus, it is clear that it is 

the frequency and not the amplitude that carries the information of a signal. 

In sensory stimulation experiments it can be demonstrated that with an 

increase in stimulation strength the frequency of the action potential 
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increases logarithmically. We are thus confronted with a discrete frequency 
modulated encoding. 

Because the action potential terminates at the presynaptic membrane, 

another mechanism must be responsible for the signal transfer beyond the 

synaptic cleft to neighboring nerve cells. This mechanism is biochemical, 

not electric, in nature and basically consists of the action potential 

triggering a release of transmitter substance at the presynaptic membrane, 

which is then diffused over the synaptic cleft. At the postsynaptic mem¬ 

brane, special receptors respond to the release of transmitter substance and, 

by means of other mechanisms, lead to the generation of postsynaptic 

potentials. This process can by very fast and can be completed in a few 

milliseconds. It should be noted, however, that the synaptic delay differs 

for different transmitters. Depending on whether or not it is an excitatory 

or inhibitory synapse, we speak of an excitatory or inhibitory postsynaptic 

potential (EPSP or IPSP). The frequency of the action potential is one of 

the most important factors influencing the strength of a postsynaptic 

potential. The higher the frequency is, (a) the more transmitter substance is 

released per time unit at the presynaptic membrane, (b) the more receptors 

respond at the postsynaptic membrane, and (c) the stronger is the extent of 

(excitatory or inhibitory) postsynaptic potential change. In the case of 

EPSPs it is a summation of potential changes in the direction of positive 

depolarization, in the case of IPSPs the summation proceeds in a negative 

direction or “hyperpolarization.” Because it is the frequency of the action 

potential that finally determines the extent of summation, we speak of the 

principle of temporal summation. 
In considering the large number of axo-dendritic synapses, it becomes 

quite obvious that one or a few postsynaptic potentials will not suffice to 

trigger an action potential in the postsynaptic neuron. And indeed it is the 

sum of EPSPs and IPSPs entering through several synapses in different 

sites of the dendritic tree that determine (besides other factors) whether or 

not an action potential will be generated. This fact that postsynaptic 

potentials generated in different regions of the neuron are added together, 

is termed principle of spatial summation. 
Both principles show that encoding is analogous at the input side of a 

nerve cell, and not discrete as it is at the output side. The transition between 

analogy and frequency coding takes place at the trigger zone, which is 

located at that point where the axon leaves the cell body. This trigger zone 

responds if an electric threshold value is exceeded. If the potential shifts 

from the resting potential of - 70 mV toward depolarization and reaches a 

value of - 60 mV, then the threshold for generating an action potential has 

been reached (Thompson, 1985). If, however, the potential shifts in a 

negative direction (hyperpolarization), then the generation of an action 

potential is inhibited. These two mechanisms of summing up excitatory and 
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inhibitory inputs and of exceeding a certain threshold in order to generate 

an output underly the assumptions of “formal neurons” (McCulloch & 

Pitts, 1943) and connectionist models (see the review in J. A. Anderson & 

Rosenfeld, 1988). 

11.1.3 Synaptic Modification 

One of the most important rules of synaptic modification was postulated by 

Donald Hebb, a psychologist interested in a complex cognitive theory, at a 

time when mechanisms of synaptic modification were neurophysiologically 

neither documented nor examined. Those who question the utility of 

neurophysiologically based representational assumptions should remember 

this interesting fact. Hebb (1949, chap. 4) defined the mechanism of 

synaptic modification that was later taken up within the framework of 

connectionism and became known and quoted under the name of the “Hebb 

rule”: “When an axon of cell A is near enough to excite a cell B and 

repeatedly or persistently takes part in firing it, some growth process or 

metabolic change takes place in one or both cells such that A’s efficiency, as 

one of the cells firing B, is increased” (p. 67). 

It took about 25 years before the Hebb rule could be experimentally 

confirmed by Bliss (Bliss & Gardner-Medwin, 1973; Bliss & Lomo, 1973). In 
neurophysiology, this mechanism became known as long-term synaptic 
potentiation (LTP). It is characterized by the fact that short bursts of action 

potentials (in the frequency range of about 100-400 Hz and lasting 

approximately 50 ms), which are experimentally induced, lead to a long¬ 

term strengthening of persistent synaptic enhancement lasting several weeks 

or even months. The extent of LTP or synaptic strengthening is experimen¬ 

tally recorded by the increasing amplitude of the EPSP or by the frequency 

of postsynaptic spikes. There are different types or features of LTPs, but 

only two are mentioned here: the associative feature and the interactive 

dependence between afferent stimulation and postsynaptic excitation (see 

the review in T. H. Brown, Chapman, Kairiss, & Keenan, 1988). The 

associative feature is a function of the intensity of stimulation; only if an 

afferent input is sufficiently strong or if several weak but converging inputs 

meet simultaneously (and thus add up), will the EPSP be sufficiently large 
to generate a LTP. The principles of temporal and spatial summation 

mentioned earlier also play a central role here. However, LTPs can be 

generated only if EPSPs can be triggered at the postsynaptic neuron. 

Voltage clamp experiments have shown that while simultaneously sup¬ 

pressing postsynaptic excitation, presynaptic stimulation alone fails to 

generate LTPs. It can therefore be concluded that the occurance of both the 

presynaptic stimulation and the subsequent postsynaptic excitation is of 

crucial importance in generating LTPs (refer to Hebb’s quotation). Finally, 
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it should be mentioned that the opposing phenomenon of long-term 
depotentiation (LTD) has also been experimentally validated. This phenom¬ 

enon is triggered by a short-lived afferent activation and leads to a 

long-term suppression of postsynaptic activation (Levy, 1985). 

11.2 THE CONNECTIVITY MODEL AS A NEURAL MODEL 

This section compares the assumptions and predictions of the connectivity 

model with the basic principles of neural information processing. We are 

aware that some of the following considerations are hypothetical and 

speculative. The justification for this attempt lies in the hope of arriving at 

a neuroscientific basis for psychological theories, if the possibilities avail¬ 

able to us at the moment, albeit speculative, are used. 

We have repeatedly emphasized that the avoidance of representational 

assumptions results in a variety of misconceptions and contradictions 

(chaps. 1 and 3). With respect to this fact, present-day memory psychology 

and its relation to neuroscience may find itself in a situation similar to the 

one Ebbinghaus faced about 100 years ago; in an attempt to arrive at a 

scientific foundation of psychology, he dismissed speculations on the 

encoding format (see section 1.2). Should we concern ourselves today with 

speculations on neurophysiological representational assumptions? We be¬ 

lieve that such a concern is worthwhile. The logic of this book aims at 

exhausting all the possibilities that allow us to arrive at a more specific and 

detailed definition of representational assumptions. As a result of this 

approach, neuroscientific findings become an essential consideration. 

11.2.1 Structural Assumptions: Their Possible 
Neural Basis 

The central assumption of interconnectivity as a general principle for 

semantic encoding is entirely supported by the fact that individual neurons 

as well as cortical modules are intensely interconnected. It should also be 

noted that the connectivity principles of partially and completely intercon¬ 

nected codes (see section 8.3) correspond to the well-known divergence/ 

convergence principle. In order to explain this fact, consider the three stages 

of activation in interconnected codes: During the first stage, the activated 

pathways diverge from the source node to the n - 1 feature nodes. At the 

beginning of the second stage activation diverges further to the remaining n 
- 2 feature nodes. But at the end of the second stage activation converges 

at each of the n - 2 feature nodes. The maximum extent of convergence is 

reached in the third stage, when activation from all of the n - 1 feature 

nodes accumulates at the source node. 
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In a functional sense, divergent circuits are seen as an indication of 

specialization and segregation. Convergent circuits, on the other hand, are 

interpreted in terms of integration (Zeki & Shipp, 1988). This notion is in 

accordance with the encoding principles of interconnected codes. The 

divergence in the first activation stage means specialization, as the different 

specific and diverging meanings of semantic features are retrieved from the 

source node. The convergence in the third stage means the integration of the 

different meanings of semantic features into a holistic conceptual meaning, 

which is represented by the entire code. 

Does a node in the semantic network of the connectivity model corre¬ 

spond to an individual neuron in the neural network? The answer to this 

question is no, whereby the following reasons appear decisive: 

1. A feature node stands for complex information, which can hardly be 

represented by an individual neuron. This reason makes it seem plausible to 

assume cortical modules (columns) as a possible neural basis for feature 

nodes. 

2. Source nodes are responsible for complex monitoring processes (refer 

back to Assumptions C2 and C3 in sections 8.6.2 and 8.6.3). Thus, for a 

similar reason, cortical modules must also be taken into consideration here. 

Once we assume that nodes correspond to modules, it becomes evident 

that the links in the network are not represented by individual axons but 

instead by a large set of different axons. Because cortical modules are 

connected with approximately 1,000 axons (in every direction), it is easy to 

accept the postulated bidirectionality that each link can be activated 

simultaneously in every direction (Assumption 4). 

It should be noted that connectionist models proceed from the assump¬ 

tion that a node is represented by a single neuron. Thus, in contrast to most 

connectionist approaches, the connectivity model refers to the macrolevel 

of cortical modules, where a node stands for several groups of 1,000 

neurons, and a link for approximately 1,000 axonal connections. 

11.2.2 Processing Assumptions: Their Possible 
Neural Basis 

Although we proceed from the assumption that nodes are represented by 

modules, we refer back to the functioning principles of individual neurons 

in the analysis of processing assumptions. This appears justified, because 

modules mirror the processing characteristics of individual neurons. 

Assumption 1, the assumption of unlimited capacity of spreading acti¬ 

vation, postulates that each node transmits the entire activation amount. 

This is actually the case in excitatory synapses, as we have seen in section 
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11.1.2. Furthermore, there is no evidence that a systematic weakening of the 

neural signal occurs with increasing length of the neural pathway (cf. the 

booster zones mentioned earlier) or with an increasing number of traversed 

synapses. These considerations therefore support the validity of the central 

processing assumptions of the connectivity model and speak against the 

assumption of a systematic weakening as it is postulated, for example, by 
ACT or ACT*. 

Assumption 2 states that a node remains active only during a critical time 

span t(k) and that its activity is set to zero if no activation arrives within 

t{k). This is in accordance with the principle of temporal summation and the 

way in which an action potential is triggered. Synaptic potentials have 

particular time constants. The potentials add up only if they fall within a 

critical time span. Only then will they sum up and they can trigger an action 

potential. If, however, the amount of activation does not suffice to reach 

the threshold for triggering an action potential, its strength will fade and 

will not play any further role. Accordingly, we may assume that in this case 

activity is “set to zero.” As a result, temporal factors play a decisive role in 

the process of triggering an action potential. 

Assumption 3 simply states that within t(k) different sources of activa¬ 

tions sum up to a single activation value. This assumption, which is an 

addition to Assumption 2, is supported by the different summation 

principles and by the fact that the trigger zone responds only if a certain 

threshold value is reached. 

Assumption 4 states that each link can be activated in both directions. 

Because we assume that a node in a semantic network does not correspond 

with a single neuron, but with larger units such as cortical modules, a link 

between nodes does not correspond with an individual axon connecting 

different neurons. Instead we assume that a link is represented by a set of 

axons connecting two cortical modules. As a result, Assumption 4 is in 

accordance with neural processing principles. 
Assumption 5 rejects the notion of reverberating activation. The reason 

behind this assumption was to enable the prediction of a particular 

spreading activation pattern, which is based on three separate stages. As 

suggested in chap. 10, we may assume that a module is an intelligent unit 

that monitors the flow of activation of its neighboring modules. According 

to Assumption 5 then, a module sends activation only to those neighboring 

nodes from which (in a certain stage) activation was not received. Although 

it is easy to imagine that cortical modules are capable of taking over this 

task, the neural implementation suggested here is highly speculative. 

According to Assumption 6, the time needed to activate a node is 

reciprocal to the strength of activation. This principle is in good agreement 

with the fact that the frequency of the action potential is an important 

factor influencing not only the strength of an EPSP but also the speed with 
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which the potential change occurs. The higher the frequency, the faster the 

postsynaptic potential change takes place. 

Assumption 7 states that in a neutral condition the nodes and links are 

functionally of equal importance. It is surely justified to proceed from the 

idea that different modules and their axonal interconnections are poten¬ 

tially of equal importance. 

The assumption that nodes do not correspond to single neurons is of 

crucial importance, as the following considerations show: Assumption 7 

would inevitably lead to contradictions if nodes would have been inter¬ 

preted in terms of individual neurons. Different neurons may well differ in 

their function. Pyramidal cells, for example, have different functional and 

structural properties as inhibitory interneurons. Thus, it can be seen that 

Assumption 7 is consistent only when nodes are represented by modules and 

not by individual neurons. A similar conclusion holds for Assumption 4, 

which postulates bidirectionality of activation. This assumption is only 

consistent if nodes correspond to modules and not to neurons. Axons do 

not function bidirectionally but have a preferred direction of activation. 

Modules, on the other hand, are connected to axonal fibers in both 

directions. 

Thus, given the assumptions of the connectivity model, we are forced to 

associate nodes with cortical modules and not with individual neurons. This 

is a compelling conclusion and not a more or less plausible assumption. We 

thus see that comparing the assumptions of psychological theories with 

neurophysiological findings is not only rewarding and promising but also 

not as speculative as had been assumed. 

Finally, consider the central prediction of the connectivity model that the 

speed of spreading activation increases as the degree of interconnectedness 

and/or the complexity of the network increases. When evaluating this 

prediction, the following time critical processes are of importance. The 

principle of temporal summation confirms the basic notion that processing 

speed increases as the amount of activation increases. More importantly, 

however, is the effect of spatial summation. According to the connectivity 

model, the predicted accelerating effect is only reached, if the strengths of 

converging branches are summed up (Equations 8.4 and 8.5). It is precisely 

this effect, discussed in detail in section 8.3.2,which corresponds to the 

principle of spatial summation outlined in section 11.1.2. The more afferent 

inputs that converge at the dendrites of a neuron, the more rapidly the 

threshold for triggering an action potential can be exceeded and the higher 
is the speed of signal processing. 

We have repeatedly emphasized that preactivation and inhibition are 

important concepts that explain dynamic processes in complex networks. It 

goes without saying that the mechanisms of LTP and LTD described in 

section 11.1.3 are of primary importance not only for learning processes, 
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but also for priming phenomena and for the dynamic processes described 

repeatedly in chap. 9. Because they can be established rapidly, LTPs and 

LTDs offer an almost ideal explanation for the creation of new codes or the 

modification of existing codes in human memory. The importance of 

synaptic modification for learning and memory processes is also docu¬ 

mented and described in detail in experiments with invertebrates (Alkon, 
1987; Kandel, 1987). 

11.3 ON THE LOCALIZATION OF MEMORY PROCESSES 

The question of which regions of the brain store memory codes has a long 

tradition and is closely related to the concept of engrams, first proposed by 

Richard Semon and thoroughly examined by Lashley (see the excellent 

historical review in Orbach, 1982). Strongly influenced by behaviorism, 

Lashley proceeded from the then generally accepted notion that memory 

processes are localized in cortical association areas. One reason for this 

assumption was the general idea that memory performance can be inter¬ 

preted in terms of associations established between sensory input (provided 

by the sensory cortex) and motor output (provided by the motor cortex). 

According to this view, it was quite obvious to see that engrams are 

represented in the association fields, which were understood as the media¬ 

tors between sensory input and motor output. When Lashley began his 

lesion studies in the 1920s, he was convinced that removing significantly 

large parts of association fields would hamper learning and memory 

performance, but not sensory or motor functions. His results, however, did 

not confirm this view. Instead, they suggested that the decline in memory 

performance observed after the lesion depends only on its size, not on its 

area within the cortex. 

These and similar findings made Lashley a radical critic of the classical 

view, which held that particular areas in the cortex are specialized for 

particular functions. He questioned the usefulness of the distinction 

between sensory, motor, and association fields and suggested that any site 

in the cortex has the potency of performing any type of task. This extreme 

position can best be characterized by his principles of equipotency (each 

area of the cortex can take on any function) and mass action (the entire 

mass of neurons participates in carrying out a task). 

The research done in recent decades has shown that Lashley’s principles 

of equipotency and mass action cannot be applied to sensory, motor, and 

linguistic processes (especially the results achieved by the brain stimulation 

technique of Ojeman & Whitaker, 1978). Some of the clearest evidence 

against Lashley’s view comes from the research carried out by Hubei and 

Wiesel. But as justified as the critique of Lashley’s theories with regard to 
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sensory, motor, and linguistic information processes is, his opinion about 

the localization of long-term memory traces remains unchallenged. In his 

famous essay entitled “In Search of the Engram” (1950) Lashley wrote: “It 

is not possible to demonstrate the isolated localization of a memory trace 

anywhere within the nervous system. Limited regions may be essential for 

learning or retention of a particular activity, but within such regions the 

parts are functionally equivalent. The engram is represented throughout the 

region” (p. 478). 
Lashley’s view about the localization of memory codes (or engrams) is 

still a timely issue (e.g., Braitenberg & Schiiz, 1991; Edelman & Mount- 

castle, 1978; John, Tang, Brill, Young, & Ono, 1986). Are memory codes 

represented in a distributed way (i.e., in a variety of different sites 

throughout the cortex) or are they represented in a localized form in 

particular sites? With respect to these questions the following facts are 

important: First, we see that in neuropsychology and physiology assump¬ 

tions underlying the encoding format play a similarly crucial role as in 

cognitive psychology. Second, and even more important, the controversy 

between a distributed and a localized representation of memory codes 

shows many similarities with the controversy between holistic and compo¬ 

nent codes. The notion of looking for isolated and locally represented 

engrams originated in all probability from an incorrect memory conception: 

The concept of engrams misleadingly suggests a holistic coding format. If 

we were to accept the idea of a holistic format, we would inevitably also 

have to assume that codes are clearly localized in particular cortical areas. 

However, we have attempted to show (especially chaps. 3 and 8) that codes 

consist of an interconnected structure of different components. If we 

proceed from the idea that these components, which of course can also 

comprise information from different sensory systems, are stored in dif¬ 

ferent regions of the cortex, then it becomes obvious that codes are 

represented in a distributed way. We thus arrive at the conclusion that 

memory codes cannot be clearly localized, because its components are 

represented in numerous but different regions of the cortex. 

Some aspects of the controversy outlined here can be put down to the 

insufficient distinction made between complex semantic codes (representing 

symbolic information) and elementary codes (representing nonsymbolic 

information). Researchers like Alkon (1988) and Kandel (1987), who traced 

elementary learning and memory processes (e.g., the formation of condi¬ 

tioned responses in invertebrates) to specific processes of synaptic modifi¬ 

cation, seem to place the assumption of a localized representation on a 

sound empirical basis. In contrast to this, researchers like John (John et al., 

1986), who use higher mammals and comparatively complex tasks, arrive at 

the conclusion that memory information is represented throughout the 

entire brain. 
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For a better evaluation of this controversy, however, it is also necessary 

to take note of the distinction made between encoding processes within the 

domain of STM and retrieval processes from LTM. It is well accepted that 

the hippocampal formation (the famous case of patient HM see Scoville & 

Millner, 1957) like other regions of the limbic system (see the reviews in 

Markowitsch, 1983, 1988; Markowitsch & Pritzel, 1985; Mishkin & Appen- 

zeller, 1987) are of particular importance for encoding processes. However, 

for the assumption that the storage of long-term memory information takes 

place in clearly defined cortical sites, there is no convincing evidence. 

Section 8.1 suggested that integrated, that is, intensively interconnected 

codes are stored in LTM. Because the development of interconnections can 

be interpreted as a long-term and learning-dependent process, it seems 

plausible to assume that LTM codes are, by far, more complex and, 

therefore, more distributed than STM codes. This interpretation may 

contribute to the explanation of the fact that, in contrast to LTM, encoding 

processes can be localized to some extent. Yet another interpretation could 

be based on the notion that attentional and monitoring processes —which 

also are needed to initiate search processes in LTM — converge in that site of 

the brain where encoding processes are localized (refer to the hippocampal 

indexing theory by Teyler & DiScienna, 1986). According to this view, the 

hippocampal formation —the integrity of which is of crucial importance for 

encoding —may be one of the sites, where pathways responsible for vital 

control mechanisms converge. A lesion in this site or the disruption of the 

pathways leading to this site thus lead to particularly obvious symptoms 

and, therefore, suggest a clear localizability of encoding processes. 

11.3.1 The Possible Localization of Monitoring 
Processes 

Complex monitoring processes were discussed in sections 8.6.3 and 8.7. 

Their task does not lie in directing spreading activation —which follows 

automatically by local mechanisms —but in the selection of access points, 

when initiating a search process, and the retrieval of information (see the 

distinction made between general and specific search processes in section 

8.7.1). The result of a search process can be judged by the activation 

strength of a node (a module) or a code (assembly of modules): The node 

or code that reveals the highest activation value represents the relevant 

information to be retrieved. Those mechanisms that identify the relevant 

nodes or codes cannot be explained by activation processes described in 

chap. 8, but only by a special monitoring system. 
In the identification of the relevant nodes or codes, feedback loops may 

play a decisive role. During the course of spreading activation the activation 

status of the searched network is constantly transmitted to a monitoring 
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system by means of feedback loops. Because the source nodes are informed 

not only about the activation stage but also about the activation strength of 

all nodes, it would suffice if the monitoring network is connected with the 

source nodes. According to this view, the source nodes serve as interface 

between the storage and monitoring network. 

When considering in which region of the brain the monitoring network is 

localized, we proceed from the following assumptions: The storage network 

is represented in the cortex and the links of the monitoring network 

converge in a particular monitoring system. Consequently, the monitoring 

system should be connected with the cortex by a dense network of axonal 

connections. Besides the basal ganglia, the thalamus with its thalamo¬ 

cortical projections to virtually all different cortical regions (e.g., Hohl- 

Abrahao & Creutzfeldt, 1991) is one of those brain structures that fulfills 

this requirement. Because the dorso-medial nucleus of the thalamus is 

closely linked to the hippocampus, we can imagine that encoding and 

retrieval are prominent functions of the monitor network that converges at 

thalamic nuclei and the hippocampus. 

Some researchers have suggested that the EEG frequency within the alpha 

band (of about 8-13 Hz) stems from the thalamus and induces synchronized 

neural activity in the cortex (Andersen & Andersson, 1968). If we proceed 

from the aforementioned notion that memory codes are retrieved via 

longitudinal pathways linking thalamic nuclei with the cortex, and that 

alpha is the predominant rhythm reflecting the activity of these pathways, 

we arrive at the hypothesis that alpha frequency should be related to 

memory performance. We have tested this hypothesis (Klimesch, Schimke, 

Ladurner, & Pfurtscheller, 1990; Klimesch, Schimke, & Pfurtscheller, 1993) 

and found that alpha frequency increases significantly as memory perfor¬ 
mance increases. 



Concluding Remarks 

The rather complex nature of the preceding chapters warrants a reminder of 

the basic ideas guiding our discussion. Therefore this chapter summarizes 

the most important aspects of our arguments. 

We entered this discussion with the aim of arriving at a comprehensive 

memory theory and we believe to have found such a theory in the 

connectivity model. Initially we had to deal with two difficulties: the 

assumption of holistic codes (chaps. 1-4) and the assumption of linear 

hierarchical structures (chaps. 5-7). Both assumptions inevitably result in 

contradictions, which were discussed in chaps. 4 and 8. We have replaced the 

assumption of holistic codes with that of component codes, and the 

assumption of a hierarchical coding format with that of an interconnected 

coding format. These new assumptions have formed the basis of the 

connectivity model developed in chap. 8. The quantitative analysis of the 

connectivity model, however, has shown that a third assumption, the 

assumption of partially or unlimited capacity of spreading activation, is 

necessary to support its predictions. 

In chap. 9 we applied the connectivity model to semantic memory and 

confronted the experimental evaluation of its predictions. As a result, we 

have seen that the connectivity model was capable of explaining the 

following issues in semantic memory: 

1. The representation of the meaning of a concept by an intercon¬ 

nected structure of semantic features. 

2. Context effects that modify the meaning of a concept. 

3. The effects of typicality on reaction time. 

203 
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4. The representation of conceptual hierarchies. 

5. The representation of basic concepts. 

6. Complex search processes, such as the discovery, retrieval, and 

evaluation of semantic relations. 

7. Priming effects. 
8. The improved memory performance for codes rich in semantic 

features. 

The connectivity model was capable of predicting the following experi¬ 

mental findings: 

1. The more rapid processing of concepts rich in semantic features. 

2. The more rapid processing of subordinate concepts in comparison 

to superordinate concepts. 
3. The more rapid processing of basic concepts in comparison to other 

concepts. 

4. The more rapid processing of typical concepts in comparison to 

untypical concepts. 

5. The reaction time differences between yes and no responses in 

semantic decision and priming experiments. 

6. The more rapid processing of pictures in comparison to words. 

7. The improved memory performance of pictures in comparison to 

words. 

8. Other findings connected to the picture effect. 

12.1 THE CONNECTIVITY MODEL AND CONNECTIONS 
APPROACHES 

We have compared the connectivity model with the assumptions of 

Anderson’s ACT and ACT* models, but also to the network theories of 

semantic memory. As a result, we have seen that the central assumptions of 

the connectivity model are incompatible with those of all other models. Is 

this claim still valid when considering connectionist and other neural 
network models? 

When comparing the connectivity model with connectionist models 

(Rumelhart, McClelland, & the PDP research group, 1986) and other 

models within the domain of neural networks (J. A. Anderson & Rosenfeld, 

1988; Hinton & J. A. Anderson, 1989), we see both striking differences and 

similarities. The similarities refer to the idea of a distributed storage, which 

is based on intense interconnections between elementary coding units and to 

the fact that the assumptions of both types of models can be related to basic 

findings in neuroscience. However, the basic architecture of the models and 
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the representational assumptions are radically different. Connectionist 

models focus on dynamic processing characteristics such as learning, 

pattern recognition, and classification. To our knowledge, there is not a 

single connectionist or neural network model that is concerned with the 

prediction of time-critical processes in memory, such as search and retrieval 
time in semantic memory. 

As an example, consider a typical connectionist network. It consists of an 

encoding, pattern processing, and a decoding network. Each of these three 

networks shows two partially overlapping processing layers, an input and 

output layer. The output layer of the encoding network is the input layer of 

the pattern processing network; its output layer, in turn, forms the input 

layer of the decoding network. With respect to the connectivity model, the 

following facts are important: First, each node in the input layer is 

connected with each node of the output layer. Second, the individual nodes 

within a layer are not connected to each other, as is the case in hierarchical 

networks. Thus, the representation of a code at the input layer consists of 

a list of not interconnected elements. We already know that this form of 

representation strongly contradicts the connectivity model. A list of ele¬ 

ments indicates a linear code that is a special case of a hierarchical code 

(section 5.2). All arguments against hierarchical representational assump¬ 

tions (introduced in chap. 8) also apply, at least in principle, to connec¬ 

tionist models. However, in contrast to ACT and ACT*, these models 

assume that all the components of a code can be processed in parallel and 

largely independently of each other. As a result, the complexity of a code 

(or the number of its elements) is not a suitable predictor of processing time 

in memory: Codes of differing complexity are processed at a constant 

speed. Without additional assumptions, therefore, these models will not be 

in a position to explain time-critical processes such as search and retrieval 

time. 
Another peculiarity of connectionist and neural network models is the 

avoidance of explicit representational assumptions that go beyond a list or 

set of code elements. This is reminiscent of the discussion in chap. 3 and 4 

in which we attempted to show that the avoidance of specific representa¬ 

tional assumptions inevitably leads to contradictory memory theories. This 

fact also shows that the assumptions of connectionist models are incom¬ 

patible with those of the connectivity model. 
Another result of this avoidance of more explicit representational as¬ 

sumptions is the question of how connectionist models can describe 

semantic and syntactic structures. It is therefore not surprising that the 

connectionist approach is seen as a challenge to psycholinguistic theories. In 

reference to this, Fodor and Pylyshin (1988) wrote: “What’s deeply wrong 

with connectionist architecture is this: because it acknowledges neither 

syntactic nor semantic structure in mental representations, it perforce treats 
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them not as a generated set but as a list. But lists, qua lists, have no 

structure; any collection of items is a possible list” (p. 49). 

12.2 REPRESENTATIONAL ASSUMPTIONS AND THEIR 
IMPORTANCE FOR THE FUTURE OF COGNITIVE 

PSYCHOLOGY 

One of the basic arguments of this book purports that cognitive psychology 

cannot succeed without the explicit consideration of certain representa¬ 

tional assumptions. One could undoubtedly object to this challenging claim 

by stating that the empirical testability of representational assumptions is 

only possible in part and the approach outlined here is only one of the many 

different approaches within cognitive and memory psychology. 
It is certainly true that one single representational assumption in itself 

(e.g., Assumption 4 of the connectivity model) can hardly be tested. 

However, the predictions that result from a certain set of representational 

assumptions can be tested empirically (as shown in chap. 9) or evaluated 

theoretically (as shown in chaps. 10 and 11). This fact leads to the important 

conclusion that representational assumptions may only be tested within the 

framework of theories which, on the basis of differing representational 

assumptions, formulate mutually exclusive predictions. In other words, if 

different theories based on different representational assumptions arrive at 

the same predictions, then the validity of the representational assumptions 

underlying these theories cannot be empirically tested. The goal of cognitive 

research should therefore consist of contrasting theories that proceed from 

distinctive representational assumptions and are capable of making distinc¬ 

tive and empirically testable predictions. A good example is the assumptions 

and predictions of ACT, ACT*, and the connectivity model detailed in 

chap. 8. In this way it is possible to test certain sets and combinations of 

representational assumptions. 

The more recent development in the area of neuroscience may be used as 

a guideline for the future research in cognitive psychology. Ideally, 

representational assumptions should also refer to the physical basis of 

memory and thus to the neurophysiological level of explanation. In 

discussing this approach in chap. 11, we wanted to show that neurophysio¬ 

logical knowledge is a valuable tool in testing and evaluating representa¬ 

tional assumptions. Another promising aspect of this approach lies in the 

fact that neurophysiological knowledge is capable of spurring the develop¬ 

ment of comprehensive cognitive theories that can be tested with the help of 

psychophysiological experiments (Klimesch, Pfurtscheller, & Lindinger, 

1986; Klimesch, Pfurtscheller, & Mohl, 1988). 
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Interconnected structure, see also network 

model, connectivity model, code 

completely, 90, 93ff, 97-102, 105f 

partially, 48, 90f, 95-102, 106 

Interference, see forgetting, and inhibition, 

pro-/retroactive 

Interference theory, see forgetting 

L 

Lexical information, see also semantic 

memory, 45, 73, 76f 

Long-term memory 

code, 35f, 83, 86, 92, 104, 201 

structure, 34, 41f, 132 

task, 72f, 104 

LTP, LTD, see Synapse 

M 

Memory 

basic structure, 43-48 

distributed, 25, 81, 144f 

large-(micro-)scale model, 71 

network, 43-46, 58, 61 f, 103 

Mental rotation, 35f 

Module, 189-192, 195-198, 201 

Monitoring process, see also control pro¬ 

cess, 123f, 196, 201 f 

N 

Network model, see also ACT, ACT*, 

connectivity model 

fact retrieval, 50-70 

geometric property, 41-50 

interconnected structure, 86, 90ff, 

135-143 

non-strictly hierarchical structure, 47-50, 

60-68, 80f 

strictly hierarchical structure, 46-59, 

75-81 

structure of long-term memory, 83-86 

word meaning, 71-81, 135-138 

Network theory, see network model 

Neural information processing, 187-190, 

192, 195, 197f 

Neuron, 189-199 

Node 

access, 86, 92f, 134, 173, 183 

act, 179ff 

concept, 52, 54ff, 60f, 65ff, 132ff, 136, 

159, 165f, 171 ff, 183 

fact, 44f, 52, 55f, 59, 61, 65 

feature, 105, 107, 133, 136, 165, 179, 

183, 195f 
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Node (continued) 

hierarchical, 92f, 177, 179, 183 

source, 86-91, 93-97, 99, 105ff, 109-115, 

117, 119, 121-124, 126, 136, 158f, 

164, 175, 179f, 183f, 195f, 202 

subnode, 58ff 

P 

Paradox of retrieval interference, 52, 60, 

70, 81, 84 

Picture (superiority) effect, 168f, 204 

Poetzl phenomenon, 18 

Postsynaptic potential 

excitatory (EPSP), 191, 193f, 197 

inhibitory (IPSP), 193 

Preactivation (see activation) 

Prime, Priming, 68f, 79, 133, 138, 163-167, 

169, 175, 189, 204 

Principle of spatial summation, 193f, 198 

Principle of temporal summation, 193f, 

197f 

Prototype, 34, 74, 139f, 142, 144 

R 

Reaction time 

and search speed, 66-70, 129f 

Recognition task, 28, 40, 63, 65, 72, 158, 

168ff 

Reminiscence, 18, 20ff 

Representational assumptions, see also 

network model 

explicit, 4, 8, 10, 23-27, 31, 75, 187, 205 

historical approach, 7f 

implicit, 4, 24f, 29ff, 84, 205 

Representational problem, 2f, 6, 8, 17, 27, 

187 

Retention interval, 12ff, 19, 170 

Retrieval failure, see search failure 

Retrieval interference, see paradox of 

S 

Schema, see also prototype and typicality, 

5, 8, 34, 74, 139 

Search (process), see also network model 

area, 19-22, 29, 45, 56 

complex, 119ff, 204 

content-/location-addressable, 25 

duration, 52, 59, 85-88, 90, 97, 99, 102f, 

123 

efficiency, 20f, 24 

failure, see also “tip-of-the-tongue” 

phenomenon, 10, 18, 28f, 135 

general, 125-128, 184, 201 

goal, 45, 85, 87, 113f, 119, 125-128, 164 

retrieval, 88, 124, 127f, 201 

simple, 87, 119 

specific, 125-128, 184, 201 

speed, 51, 85, 99, 112-116, 118, 123, 126, 

129, 144f, 147, 152f, 156, 158, 161f, 

183 

termination, 87ff, 103, 106, 108, 111-114, 

116, 119, 122ff, 129, 159, 164, 183f 

Semantic 

components, see semantic feature, code 

format 

distinguisher, 73, 77 

encoding, see word meaning 

hierarchy effect, 145f 

information, 29, 35, 38, 42, 45, 48, 72, 

75f, 133ff, 138, 168, 171f, 188 

judgment task, 79, 81, 127, 145f, 152f, 

158, 160, 170, 183 

marker, 73, 77 

primitive, 73, 136 

relatedness, 80f, 135f, 144 

similarity, 80f 

Semantic feature 

abstract, 74, 76, 142f 

common, 128, 142ff, 147ff, 151 ff, 155f, 

158ff, 162-167, 173 

definition, 73f, 

sensory, 74, 147, 152 

structure, 71, 73ff, 131, 134ff, 140, 143, 

203 

typical(ity), 138-143, 147-153, 156, 163 

Semantic memory, see also word meaning, 

42, 50, 72f, 77, 79, 81, 131 f, 134, 

162, 168, 171, 173, 189, 203ff 

Semantic network, see semantic memory, 

network model 

Sensory register, 32, 34f 

Sentence verification task, 52, 79, 125 

Short-term memory 

capacity, 1, 33ff, 37, 125-128 

code, 31, 36-39, 41, 201 

structure, 31, 35-38, 41 

task, 72 

Spreading activation theory, 81 
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Subnode, see node 

Symbolic-distance effect, 35f 

Synapse, 189f, 192f, 197 

long-term depotentiation (LTD), 195, 

198 

long-term potentiation (LTP), 194, 198 

synaptic modification, 194, 199f 

synaptic potential, 190, 197f 

T 

Time-critical process, 188f, 198, 205 

“Tip-of-the-tongue” phenomenon, see also 

search failure, 18, 28f, 135 

Tri-code theory, 35, 41 

Two-parameter model, see also computer 

metaphor, 23ff, 29f 

Typicality, 5, 80, 138ff, 142f, 148f, 151ff, 

155f, 203 

W 

Word meaning, see also semantic feature 

context, 137f 

decomposition, 74 

model, 71-81, 135-138 

semantic encoding, 71-76, 133-138, 173 

Word node, 134, 136 

Word norm, 148, 152f, 157 

Wurzburg School, 7f 


